Tcl/Tk Engineering M anual

John K. Ousterhout

Sun Microsystems, Inc.
john.ousterhout @eng.sun.com

1. Introduction

Thisisamanual for people who are developing C code for Tcl, Tk, and their extensions and
applications. It describes a set of conventions for writing code and the associated test scripts.
There are two reasons for the conventions. First, the conventions ensure that certain important
things get done; for example, every procedure must have documentation that describes each of
its arguments and its result, and there must exist test scripts that exercise every line of code.
Second, the conventions guarantee that all of the Tcl and Tk code has a uniform style. This
makes it easier for usto use, read, and maintain each other’s code.

Most of the conventions originated in the Sprite operating system project at U.C. Berke-
ley. At the beginning of the Sprite project my students and | decided that we wanted a uniform
style for our code and documentation, so we held a series of meetings to choose the rules. The
result of these meetings was a document called The Sprite Engineering Manual. None of us
was completely happy with all the rules, but we all managed to live by them during the project
and | think everyone was happy with the results. When | started work on Tcl and Tk, | decided
to stick with the Sprite conventions. This document is based heavily on The Sprite Engineering
Manual.

There are few things that | consider non-negotiable, but the contents of this manual are
one of them. | don’t claim that these conventions are the best possible ones, but the exact con-
ventions don’'t really make that much difference. The most important thing is that we al do
things the same way. Given that the core Tcl and Tk code follows the conventions, changing
the rules now would cause more harm than good.

Please write your code so that it conforms to the conventions from the very start. For
example, don’t write comment-free code on the assumption that you' |l go back and put the
commentsin later once the code is working. This simply won't happen. Regardless of how
good your intentions are, when it comes time to go back and put in the comments you’ll find
that you have a dozen more important things to do; as the body of uncommented code builds
up, it will be harder and harder to work up the energy to go back and fix it al. One of the fun-
damental rules of softwareisthat its structure only gets worse over time; if you don’t build it
right to begin with, it will never get that way later. When | write code | typically write the pro-
cedure headers for awhole file before | fill in any of the bodies.

Therest of this document consists of 8 major parts. Section 2 discusses the overal struc-
ture of a package and how to organize header files. Section 3 describes the structure of aC
code file and how to write procedure headers. Section 4 desribes the Tcl/Tk naming conven-
tions. Section 5 presents low-level coding conventions, such as how to indent and where to put
curly braces. Section 6 contains a collection of rules and suggestions for writing comments.
Section 7 describes how to write and maintain test suites. Section 8 describes how to make

Tcl/Tk Engineering Manual September 1, 1994 1

code portable without making it unreadable too. Section 9 contains afew miscellaneous topics,
such as keeping a change log.

2. Packages and header files

Tcl applications consist of collections of packages. Each package provides code to implement
arelated set of features. For example, Tcl itself is apackage, asis Tk; various extensions such
as Tcl-DP, TclX, Expect, and BLT are also packages. Packages are the unitsin which code is
developed and distributed: a single package istypically developed by a single person or group
and distributed as aunit. One of the best things about Tcl isthat it is possible to combine many
independently-devel oped packages into a single application; packages should be designed with
thisin mind. This section describes the file structure of packages with an emphasis on header
files; later sections discuss conventions for code files. You may also wish to review Chapter 31
of the Tcl book for additional information on packages, such as how to interface them to the
rest of an application.

2.1 Package prefixes

Each package has a unique short prefix. The prefix isused in file names, procedure names, and
variable namesin order to prevent name conflicts with other packages. For example, the prefix
for Tcl ist cl ; Tcl’s exported header fileiscalled t ¢l . h and exported procedures and vari-
ables have nameslike Tcl _Eval .

2.2 \Version numbers

Each package has atwo-part version number such as 7.4. The first number (7) is called the
major version number and the second (4) is called the minor version number. The version num-
ber changes with each public release of the package. If a new release contains only bug fixes,
new features, and other upwardly compatible changes, so that code and scripts that worked
with the old version will also work with the new version, then the minor version number incre-
ments and the major version number stays the same (e.g., from 7.4 to 7.5). If the new release
contains substantial incompatibilities, so that existing code and scriptswill have to be modified
to run with the new version, then the major version number increments and the minor version
number resets to zero (e.g., from 7.4 to 8.0).

2.3 Overall structure

A packagetypically consists of several codefiles, plus at |east two header files, plus additional
filesfor building and configuring the package, suchasaMakefi | e andaconfigure.in
filefor theaut oconf program. The header files for a package generally fall into the follow-
ing categories:

* A package header file, which is named after the package, such ast cl . h ort k. h. This
header file describes al of the externally-visible features of the package, such as proce-
dures, global variables, and structure declarations. The package header fileis eventually
installed in a system directory such as/ usr/ | ocal /i ncl ude; itiswhat clients of the
package #i ncl ude in their C code. Asagenera rule of thumb, the package header file
should define as few things as possible: it's very hard to change an exported feature since it
breaks client code that uses the package, so the less you export, the easier it will be to make
changes to the package. Thus, for example, try not to make the internal fields of structures
visible in package header files.

¢ Aninternal header file, which istypically #i ncl uded by al of the C filesin the package.
Theinternal header filehasanameliket cl I nt. h ort kl nt . h, consisting of the the
package prefix followed by | nt . h. Theinternal header file describes features that are used
in multiplefiles within the package but aren’t exported out of the package. For example, key

Tcl/Tk Engineering Manual September 1, 1994 2

package structures and internal utility procedures are defined in theinternal header file. The
internal header file should also contain #i ncl udesfor other headers that are used widely
within the package, so they don’'t have to be included over and over in each code file. As
with the package header, the internal header file should be as small as possible; structures
and procedures that are only used in asingle C file in the package should not appear init.

* A porting header file, which contains definitions that hide the differences between the sys-
tems on which the package can be used. The name of the porting header should consist of the
package prefix follwed by Por t . h, suchast cl Port . h.

¢ Other internal header files for various subpackages within the package. For example, there
isafilet kText . hin Tk that is shared among al the files that implement text widgets and
another filet kCanvas. h that is shared among all the widgets i mplementing canvases.

I recommend having as few header files as possible in each package. In ailmost all casesa
package header file, asingle internal header file, and a porting header file will be sufficient,
and in many cases the porting header file may not be necessary. The internal header file should
automatically #i ncl ude the package header file and perhaps even the porting header file, so
each C filein the package only needsto #i ncl ude one or at most two header files. | recom-
mend keeping the porting header separate from the internal header file in order to maintain a
clean separation between porting code and the rest of the module. Other internal headers
should only be necessary in unusual cases, such as the Tk text and canvas widgets (each of

t kText . handt kCanvas. h ismany hundred lines|ong, due to the complexity of the wid-
gets, and they are needed only in the source files that implement the particular widgets, so |
thought it would be easier to manage these headers separately fromt k1 nt . h). If you have
lots of internal header files, such as one for each source file, then you will end up with lots of
#i ncl ude statementsin each C file and you'll find that either (@) you #i ncl ude every
header in every C file (in which case there's not much advantage to having the separate . h
files) or (b) you are constantly adding and deleting #i ncl ude statements as you modify
sourcefiles.

2.4 Header file structure

Figure 1 illustrates the format of a header file. Your header files should follow this structure
exactly: same indentation, same order of information, and so on. To make this as easy as possi-
ble, the directory engManual in the Tcl source tree contains templates for various pieces of
source files. For example, the file pr ot 0. h contains atemplate for a header file; there are
also templates for code files and procedure headers. You should be able to set up your editor to
incorporate the templates when needed, then you can modify them for the particular situation
inwhich they are used. This should make it easy for you to conform to the conventions without
alot of typing overhead.

Each header file contains the following parts, which are labelled in Figure 1:

Abstract: thefirst few lines give the name of the file plus a short description of its overal
purpose.

Copyright notice: this protects the ownership of the file and controls distribution; different
notices may be used on different files, depending on whether the file is to be released freely
or restricted. The wording in copyright noticesis sensitive (e.g. the use of upper caseis
important) so don’t make changes in notices without checking with alegal authority.

Revision string: the contents of this string are managed automatically by the source code
control system for thefile, such as RCS or SCCS (RCSisused in the examplein the figure).
It identifies the file’'s current revision, date of last modification, and so on.

Multipleinclude#ifdef: when alarge application is devel oped with many related packages,
itishard to arrange the #i ncl ude statements so that each include fileisincluded exactly
once For example, filesa. h and b. h might both include c. h, and a particular code file
might include both a. h and b. h. Thiswill cause c. h to be processed twice, and could
potentialy result in compiler errors such as multiply-defined symbols. With the recursion

Tcl/Tk Engineering Manual September 1, 1994 3

Abstract

Copyright

Revision
String

Multiple
Include
#ifdef

Version
Defines

Structure
Declaration

Variable
Declaration

Procedure
Prototype

Multiple
Include
#endif

1

—

>('>('O>('>('>('>('>('>('

tcl.h --

This header file describes the externally-visible facilities
of the Tcl interpreter.

Copyright (c) 1987-1994 The Regents of the University of California.
Al rights reserved.

Perm ssion is hereby granted, w thout witten agreenment and wi t hout
license or royalty fees, to use, copy, nodify, and distribute this
software and its docunentation for any purpose, provided that the
above copyright notice and the followi ng two paragraphs appear in
all copies of this software.

I'N NO EVENT SHALL THE UNI VERSI TY OF CALI FORNI A BE LI ABLE TO ANY PARTY FOR
DI RECT, | NDI RECT, SPECI AL, | NCI DENTAL, OR CONSEQUENTI AL DAMAGES ARI SI NG

F % X O X F X X X X X X X X X F X

ouT
* OF THE USE OF TH S SOFTWARE AND | TS DOCUMENTATI ON, EVEN | F THE UNI VERSI TY
CALI FORNI A HAS BEEN ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGE.

THE UNI VERSI TY OF CALI FORNI A SPECI FI CALLY DI SCLAI M5 ANY WARRANTI ES,

I NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY
AND FI TNESS FOR A PARTI CULAR PURPOSE. THE SOFTWARE PROVI DED HEREUNDER | S
ON AN "AS | S" BASIS, AND THE UNI VERSI TY OF CALI FORNI A HAS NO OBLI GATI ON

PROVI DE MAI NTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, CR MODI FI CATI ONS.

* $Header: /user6/ouster/tcl/RCS/tcl.h,v 1.139 94/05/26 14:40: 43 ouster Exp
$ SPRI TE (Ber kel ey)
*
/

#i f ndef _TCL
#define _TCL

#define TCL_VERSION "7.4"
#define TCL_MAJOR VERSI ON 7
#def i ne TCL_M NOR_VERSI ON 4

/*
* The structure returned by Tcl _Get Cndl nfo and passed into
* Tcl _Set Cdl nf o:

*/
typedef struct Tcl_Cndlnfo {
Tcl _CndProc *proc; /* Procedure that inplenents
comrand. */
ClientData clientData; /* dientData passed to proc. */
Tcl _CndDel et eProc *del et eProc; /

is deleted. */

*

* Procedure to call when conmand
*

* Val ue to pass to del eteProc

dientDat a del et eDat a; /
(usual ly

} Tcl _Cmdl nfo;

* the sane as clientData). */

o

EXTERN i nt t cl _AsyncReady;
EXTERN i nt Tcl _Eval _ANSI _ARGS ((Tcl _Interp *interp, char
*cn)) ;

#endif /* _TCL */

Tcl/Tk Engineering Manual September 1, 1994 4

#i f def , plusthe matching #endi f at the end of thefile, the header file can be

#i ncl uded multiple times without problems. The symbol _ TCL is defined the first time
the header fileisincluded; if the header isincluded again the presence of the symbol causes
the body of the header file to be skipped. The symbol used in any given header file should
be the same as the name of the header file except with the . h stripped off, a_ prepended,
and everything €l se capitalized.

Version defines: for each package, three symbols related to the current version number
should be defined. The first gives the full version number as a string, and the second and
third give the mgjor and minor numbers separately asintegers. The namesfor these symbols
should be derived from the package prefix asin Figure 1.

Declarations: the rest of the header file consists of declarations for the things that are
exported from the package to its clients. Most of the conventions for coding these declara-
tions will be discussed later. When declaring variables and procedures, use EXTERN instead
of ext er n to declare them external. The symbol EXTERN can then be#def i nedto either
externorextern "C' toalow the header fileto be used in both C and C++ programs.
The header filet ¢l . h contains codeto #def i ne the EXTERN symbol; if your header file
doesn’'t #i ncl ude t cl . h, you can copy the code fromt cl . h to your header file.

25 _ANSI_ARGS_ prototypes

Procedure prototypes should use the _ANSI _ ARGS__ macro as shown in Figure 1.

_ANSI _ ARGS__makesit possible to write full procedure prototypes for the normal case where
an ANSI C compiler will be used, yet it also alowsthe file to be used with older non-ANSI
compilers. Touse _ANSI _ARGS , specify the entire argument list, including parentheses, as
an argument to the _ANSI _ ARGS_ macro; _ ANSI _ ARGS _ will evaluate to either this argu-
ment list or () , depending on whether or not an ANSI C compiler is being used. The

_ANSI _ARGS_macroisdefinedintcl . h.

In the argument lists in procedure prototypes, be sure to specify names for the arguments
aswell astheir types. The names aren’t required for compilation (for example, the declaration
for Tcl _Eval could have been written as

EXTERN i nt Tcl _Eval _ANSI _ARGS ((Tcl _Interp *, char
“));
in Figure 1) but the names provide additional information about the arguments.

3. How to organize a code file

Each source code file should contain arelated set of procedures, such as the implementation of
awidget or canvas item type, or a set of procedures to implement hash tables. Before writing
any code you should think carefully about what functions are to be provided and divide them
up into filesin alogical way. In my experience, the most manageable sizefor filesisusually in
the range of 500-2000 lines. If afile gets much larger than this, it will be hard to remember
everything that the file does. If afileis much shorter than this, then you may end up with too
many filesin adirectory, which is also hard to manage.

Codefiles are divided into pages separated by formfeed (control-L) characters. The first
page of the fileis a header page containing information that is used throughout the file. Each
additional page of the file contains one procedure. This approach has two advantages. First,
when you print acode file each procedure header will start at the top of the page, which makes
for easier reading. Second, you can browse through all of the proceduresin afile by searching
for the formfeed characters.

Tcl/Tk Engineering Manual September 1, 1994 5

Abstract

Copyright

Revision
String

tclLink.c --

This file inplements linked variables (a C variable that is
tied to a Tcl variable). The idea of |inked variables was
first suggested by Andreas Stolcke and this inplenentation is
Eased heavily on a prototype inplenentation provided by

im

Copyright (c) 1993 The Regents of the University of California.
Al'l rights reserved.

Perm ssion is hereby granted, without witten agreement and wi t hout
license or royalty fees, to use, copy, nodify, and distribute this
software and its docunentation for any purpose, provided that the
above copyright notice and the follow ng two paragraphs appear in
all copies of this software.

E BN B R I SN R T R B L I I L B R R T I R

;o
[static char rcsid[] = "$Header: /user6/ouster/tcl/RCS/tclLink.c,v 1.5

94/ 04/ 23 16:12: 30 ouster Exp $ SPRITE (Berkeley)";

Includes [#i nclude "tcllnt.h"

Declarations

Prototypes

-
* For each linked variable there is a data structure of the follow ng
* type, which describes the link and is the clientData for the trace
* set on the Tcl variable.

*/

typedef struct Link {

Tcl _Interp *interp; /* Interpreter containing Tcl variable. */
char *addr; /* Location of C variable. */
int type; /* Type of link (TCL_LINK_INT, etc.). */
int witable; /* Zero neans Tcl variable is read-only. */
uni on {

int i;

doubl e d;
} | ast Val ue; /* Last known value of C variable; wused to

* avoid string conversions. */
L} Link;

-
* Prototypes for procedures referenced only in this file:
*/

static char * Li nkTraceProc _ANSI _ARGS ((CientData clientData,
Tcl _Interp *interp, char *namel, char *nane2,
int flags));

static char * StringVal ue _ANSI _ARGS_((Link *IinkPtr,

char *buffer));

Figure 2. Anexample of a header page. Part of the text of the copyright notice has been
omitted. ThefileengManual / pr ot 0. ¢ contains atemplate for a header page.

3.1 Thefile header page

Thefirst page of acodefileis aheader page. It contains overall information that is relevant
throughout the file, which consists of everything but the definitions of the file's procedures.
The header page typically has six parts, as shown in Figure 2:
Abstract: thefirst few lines give the name of the file and a brief description of the overall
functions provided by thefile, just asin header files.

Copyright notice: protects ownership of thefile, just asin header files.

Tcl/Tk Engineering Manual September 1, 1994

Revision string: similar to the revision stringsin header files, except that itsvalueis used to
initialize a string variable. This allows the revision information to be checked in the execut-
able object file.

Include statements: al of the#i ncl ude statements for the file should appear on the
header file just after the version string. In general there should be very few #i ncl ude
statementsin a given code file, typically just for the package's internal header file and port-
ing header file. If additional #i ncl udes are needed they should appear in the package's
internal header file or porting header file.

Declarations: any structures used only in this file should be declared on the header page
(exported structures must be declared in header files). In addition, if the file defines any
static or global variables then they should be declared on the header page. This makes it
easy to tell whether or not afile has static variables, which isimportant if thefileis ever
used in a multi-threaded environment. Static variables are generally undesirable and should
be avoided as much as possible.

Prototypes: procedure prototypes for procedures referenced only in this file should appear
at the very end of the header page (prototypes for exported procedures must appear in the
package header file). Usethe _ANSI_ARGS _macro described in Section 2.5.

Please structure your header pagesin exactly the order given above and follow the syntax of
Figure 2 as closely as possible. The fileengManual / pr ot 0. ¢ provides atemplate for a
header page.

Source files should never contain ext er n statements. Instead, create header filesto hold
the ext er n statements and #i ncl ude the header files. This makes code files easier to read
and makes it easier to manage the ext er n statements, since they’re centralized in . h files
instead of spread around dozens of code files. For example, the internal header file for a pack-
age hasext er n statements for all of the procedures that are used by multiple files within the
package but aren’t exported outside it.

3.2 Procedure headers

Each page after the first onein afile should contain exactly one procedure. The page should
begin with a procedure header that gives overall documentation for the procedure, followed by
the declaration and body for the procedure. See Figures 3 and 4 for examples. The header
should contain everything that a caller of the procedure needs to know in order to use the pro-
cedure, and nothing else. It consists of three parts:

Abstract: thefirst linesin the header give the procedure’s name, followed by a brief
description of what the procedure does. This should not be a detailed description of how the
procedure is implemented, but rather a high-level summary of its overall function. In some
cases, such as callback procedures, | recommend also describing the conditions under which
the procedure is invoked and who calls the procedure, asin Figure 4.

Results: this portion of the header describes describes how the procedure affects things that
areimmediately visibleto its caller. Thisincludes the return value of the procedure and any
modifications made to the caller’s variables via pointer arguments, suchasi nt Pt r in
Figure 3.

Side Effects: the last part of the header describes changes the procedure makes to its inter-
nal state, which may not be immediately visible to the caller but will affect later callsto this
or other procedures. This section should not describe every internal variable modified by the
procedure. It should simply provide the sort of information that users of the procedure need
in order to use the procedure correctly. See Figure 4 for an example.

ThefileengManual / pr ochead contains atemplate for a procedure header, which you can

include from your editor to save typing. Follow the syntax of Figures 3 and 4 exactly (same
indentation, double-dash after the procedure name, etc.).

Tcl/Tk Engineering Manual September 1, 1994 7

Tcl _Getlnt --

G ven a string, produce the correspondi ng integer val ue.

* 0% Xk X X X X X

Resul ts:
* The return value is normally TCL_OK; in this case *intPtr
* will be set to the integer value equivalent to string. |If
* string is inproperly fornmed then TCL_ERROR i s returned and
* an error message Will be left in interp->result.
*
* Side effects:
* None.
*
K o o o e e e o e — = -
*/
i nt

Tcl _Getlnt(interp, string, intPtr)
/*

Tcl _Interp *interp; Interpreter to use for error reporting.

*/
char *string; /* String containing a (possibly signed)
* integer in a formacceptable to strtol.
*/
int *intPtr; /* Place to store converted result. */
{
}
Figure 3. The header comments and declaration for a procedure. Thefile
engManual / pr ochead contains atemplate for thisinformation.
/

Scal eBitmap - -

This procedure is invoked to rescale a bitnap itemin a
canvas. It is one of the standard item procedures for
bitmap itens, and is invoked by the generic canvas code,
for exanple during the "scal e" w dget conmmand.

Resul ts:
None.

Side effects:
The itemreferred to by itenPtr is rescaled so that the
following transformation is applied to all point coordi nates:
X' = originX + scal eX*(x-originX)
y' = originY + scaleY*(y-originY)

F % X O F O X F X X X X X X X X X X X F F

static void

Scal eBi t map(canvasPtr, itenPtr, originX originY, scaleX scaleY)
Tk_Canvas *canvasPtr; /* Canvas containing rectangle. */
Tk Item*itenPtr; /* Rectangle to be scaled. */
doubl e originX, originy; /[* Origin about which to scale rect.

*
/ doubl e scal eX; / Amount to scale in X direction.
; doubl e scal eY; / Amount to scale in Y direction.
{
}

Tcl/Tk Engineering Manual September 1, 1994

3.3 Procedure declarations

The procedure declaration should also follow exactly the syntax in Figures 3 and 4. The first
line gives the type of the procedure’s result. All procedures must be typed: usevoi d if the
procedure returns no result. The second line gives the procedure’s name and its argument list.
If there are many arguments, they may spill onto additional lines (see Sections 5.1 and 5.5 for
information about indentation). After this come the declarations of argument types, one argu-
ment per ling, indented, with a comment after each argument giving a brief description of the
argument. Every argument must be explicitly declared, and every argument must have a com-
ment.

Thisform for argument declarationsisthe old form that predates ANSI C. It'simportant to
use the old form so that your code will compile on older pre-ANSI compilers. Hopefully there
aren’t too many of these compilers|eft, and perhapsin afew years we can switch to the ANSI
form, but for now let’s be safe. Every procedure should also have an ANSI-style prototype
either on the file's header page or in aheader file, so this approach still allows full argument
checking.

3.4 Parameter order

Procedure parameters may be divided into three categories. In parameters only pass informa-
tion into the procedure (either directly or by pointing to information that the procedure reads).
Out parameters point to things in the caller’'s memory that the procedure modifies. In-out
parameters do both. Below is a set of rules for deciding on the order of parameters to a proce-
dure:

1. Parameters should normally appear in the order in, infout, out, except where overridden by
the rules below.

2. If thereisagroup of procedures, al of which operate on structures of a particular type, such
as a hash table, the token for the structure should be the first argument to each of the proce-
dures.

3. When two parameters are the address of a callback procedureand ad i ent Dat a valueto
passto that procedure, the procedure address should appear in the argument list immediately
beforethe d i ent Dat a.

4. If acallback procedure takesaC i ent Dat a argument (and al callbacks should), the
d i ent Dat a argument should be the first argument to the procedure. Typically theCl i -
ent Dat a isapointer to the structure managed by the callback, so thisisreally the same as
rule 2.

3.5 Procedure bodies

The body of a procedure follows the declaration. See Section 5 for the coding conventions that
govern procedure bodies. The curly braces enclosing the body should be on separate lines as
shown in Figures 3 and 4.

4. Naming conventions

Choosing namesis one of the most important aspects of programming. Good names clarify the
function of aprogram and reduce the need for other documentation. Poor names result in ambi-
guity, confusion, and error. For example, in the Sprite operating system we spent four months
tracking down a subtle problem with the file system that caused seemingly random blocks on
disk to be overwritten from time to time. It turned out that the same variable name was used in
some places to refer to physical blocks on disk, and in other placesto logical blocksin afile;
unfortunately, in one place the variable was accidentally used for the wrong purpose. The bug
probably would not have occurred if different variable names had been used for the two kinds
of block identifiers.

Tcl/Tk Engineering Manual September 1, 1994 9

This section gives some general principles to follow when choosing names, then lists spe-
cific rules for name syntax, such as capitalization, and finally describes how to use package
prefixesto clarify the module structure of your code.

4.1 General considerations

Theideal variable nameis one that instantly conveys as much information as possible about
the purpose of the variable it refers to. When choosing names, play devil’s advocate with your-
self to seeif there are ways that a name might be misinterpreted or confused. Here are some
things to consider:

1. Areyou consistent? Use the same name to refer to the same thing everywhere. For example,
in the Tcl implementation the name i nt er p is used consistently for pointersto the user-
visible Tcl _I nt er p structure. Within the code for each widget, a standard name isalways
used for a pointer to the widget record, such as but Pt r in the button widget code and
menuPt r inthe menu widget code.

2. If someone sees the name out of context, will they realize what it stands for, or could they
confuse it with something else? For example, in Sprite the procedure for doing byte-swap-
ping and other format conversion was originally called Swap_Buf f er. When | first saw
that name | assumed it had something to do with 1/O buffer management, not reformatting.
We subsequently changed the nameto Fnt _Convert .

3. Could this name be confused with some other name? For example, it's probably amistake to
havetwo variabless and st r i ng in the same procedure, both referring to strings: it will be
hard for anyone to remember which is which. Instead, change the names to reflect their
functions. For example, if the strings are used as source and destination for a copy opera-
tion, name them sr c and dst .

4. |sthe name so generic that it doesn’t convey any information? The variable s from the pre-
vious paragraph is an example of this; changing its name to sr ¢ makes the name less
generic and hence conveys more information.

4.2 Basic syntax rules

Below are some specific rules governing the syntax of names. Please follow the rules exactly,
since they make it possible to determine certain properties of avariable just from its name.

1. Variable names a\ways start with alower-case |etter. Procedure and type names always start

with an upper-case letter.
int counter;
extern char *FindEl enent ();
typedef int Bool ean;

2. In multi-word names, the first letter of each trailing word is capitalized. Do not use under-
scores as separators between the words of aname, except asdescribed inrule 5 below and in
Section 4.3.

int numA ndows;

3. Any name that refersto apointer endsin Pt r . If the name refers to a pointer to a pointer,
thenitendsin Pt r Pt r, and so on. There are two exceptions to thisrule. Thefirstisfor
variables that are opague handles for structures, such as variables of type Tk_W ndow.
These variables are actually pointers, but they are never dereferenced outside Tk (clients can
never look at the structure they point to except by invoking Tk macros and procedures). In
this casethe Pt r isomitted in variable names. The second exception to the ruleisfor
strings. We decided in Sprite not to require Pt r suffixes for strings, since they are always
referenced with pointers. However, if avariable holds a pointer to a string pointer, then it
must have the Pt r suffix (there'sjust one lesslevel of Pt r for strings than for other struc-
tures).

Tcl/Tk Engineering Manual September 1, 1994 10

TkW ndow *wi nPtr;
char *nane;
char **nanePtr;

4. Variables that hold the addresses of procedures should have names ending in Pr oc. t ype-

def s for these variables should also have names ending in Pr oc.
typedef void (Tk_I nmageDel eteProc)(ClientData clientData);
Tk_1 mageDel et eProc *del et eProc;

5. #def i ned constants and macros have names that are all capital |etters, except for macros
that are used as replacements for procedures, in which case you should follow the naming
conventions for procedures. If namesin all caps contain multiple words, use underscores to
separate the words.

#define NULL O
#defi ne BUFFER_SI ZE 1024
#define Mn(a, b) (((a) < (b)) ? (a) : (b))

6. Names of programs, Tcl commands, and keyword arguments to Tcl commands (such as Tk
configuration options) are usually entirely in lower case, in spite of the rules above. Therea-
son for thisruleis that these names are likely to typed interactively, and | thought that using
all lower case would make it easier to type them. In retrospect I'm not sure this was a good
idea; in any case, Tcl procedure and variable names should follow the same rules as C pro-
cedures and variables.

4.3 Names reflect package structure

Names that are exported outside a single file must include the package prefix in order to make
sure that they don’t conflict with global names defined in other packages. The following rules
define how to use package prefixesin names;

1. If avariable or procedure or type is exported by its package, the first letters of its name must
consist of the package prefix followed by an underscore. Only the first |etter of the prefix is
ever capitalized, and it is subject to the capitalization rules from Section 4.2. The first letter
after the prefix is aways capitalized. The first example below shows an exported variable,
and the second shows an exported type and exported procedure.

extern int tk_numVai nW ndows;
extern Tcl _Interp *Tcl _Createl nterp(void);

2. If amodule contains several files, and if anameisused in several of those files but isn't
used outside the package, then the name must have the package prefix but no underscore.
The prefix guarantees that the name won't conflict with a similar name from a different
package; the missing underscore indicates that the name is private to the package.

extern voi d TkEvent DeadW ndow(TkW ndow *w nPtr);

3. If anameis only used within a single procedure or file, then it need not have the module
prefix. To avoid conflicts with similar namesin other files, variables and procedures
declared outside procedures must always be declared st at i ¢ if they have no module pre-
fix.

static int initialized,

4.4 Standard names
The following variable names are used consistently throughout Tcl and Tk. Please use these

names for the given purposes in any code you write, and don’t use the names for other pur-
poses.

clientData Usedfor variablesof typed i ent Dat a, which are associ-
ated with callback procedures.

Tcl/Tk Engineering Manual September 1, 1994 11

interp Used for variables of type Tcl _| nt er p: these are the
(mostly) opague handles for interpreters that are given to Tcl
clients. These variables should really have aPt r extension,
but the name was chosen at a time when interpreters were
totally opaque to clients.

i Ptr Used for variables of type | nt er p *, which are pointersto
Tcl’sinternal structures for interpreters. Tcl procedures often
have an argument named i nt er p, whichis copiedinto a
local variable namedi Pt r in order to access the contents of
the interpreter.

next Ptr A field with thisnameis used in structures to point to the next
structurein alinked list. Thisis usally the last field of the
structure.

tkwin Used for variables of type Tk_ W ndow, which are opaque
handles for the window structures managed by Tk.

Wi nPtr Used for variables of type TkKW ndow *, which are pointers

to Tk’sinternal structures for windows. Tk procedures often
take an argument named t kwi n and immediately copy the
argument into alocal variable namedwi nPt r in order to
access the contents of the window structure.

5. Low-level coding conventions

This section describes several low-level syntactic rules for writing C code. The reason for hav-
ing these rulesis not because they’ re better than all other ways of structuring code, but in order
to make all our code ook the same.

5.1 Indents are 4 spaces

Each level of indentation should be four spaces. There are waysto set 4-space indentsin all
editorsthat | know of. Be sure that your editor really usesfour spaces for the indent, rather than
just displaying tabs as four spaces wide; if you use the latter approach then the indents will
appear eight spaces wide in other editors.

5.2 Code comments occupy full lines

Comments that document code (as opposed to declarations) should occupy full lines, rather
than being tacked onto the ends of lines containing code. The reason for this is that side-by-
side comments are hard to see, particularly if neighboring statements are long enough to over-
lap the side-by-side comments. Comments must have exactly the structure shown in Figure 5,
including aleading/ * line, atrailing*/ line, and additional blank lines above and below. The
leading blank line can be omitted if the comment is at the beginning of ablock, asisthecasein
the second comment in Figure 5. Each comment should be indented to the same level asthe
surrounding code. Use proper English in comments: write compl ete sentences, capitalize the
first word of each sentence, and so on.

5.3 Declaration comments are side-by-side

When documenting the arguments for procedures and the members of structures, place the
comments on the same lines as the declarations. Figures 3 and 4 show comments for procedure
arguments and Figure 6 shows a simple structure declaration. The format for commentsis the
same in both cases. Place the comments to the right of the declarations, with all the left edges
of al the comments lined up. When a comment reguires more than one line, indent the addi-
tional linesto the same level asthefirst line, with the closing */ on the sameline asthe end of
the text. For structure declarationsit is usually useful to have a block of comments preceding

Tcl/Tk Engineering Manual September 1, 1994 12

if (searchPtr->linesLeft <= 0) {
goto searchOQver;

/*

* The outernost loop iterates over lines that may potentially contain
a relevant tag transition, starting fromthe current segnment in

* the current line.

*/

*

segPtr = searchPtr->nextPtr;
while (1) {
/*

* Check for nore tags on the current line.
*/

for (; segPtr != NULL; segPtr = segPtr->nextPtr) {
if (segPtr == searchPtr->lastktr) {
goto searchQver;

Figure 5. Commentsin code have the form shown above, using full lines, with lined-up stars,
the/ * and */ symbols on separate lines, and blank separator lines around each comment
(except that the leading blank line can be omitted if the comment is at the beginning of a code
block).

The followi ng structure defines a variable trace, which is used to

i nvoke a specific C procedure whenever certain operations are perforned
on a variabl e.

/

* X X F

typedef struct VarTrace {

Tcl _VarTraceProc *traceProc;/* Procedure to call when operations given
by flags are performed on variable. */
Argunent to pass to proc. */

What events the trace procedure is

*
dientData clientData; /*
/*
* interested in: OR-ed conbination of
*
*
*
*

int flags;

TCL_TRACE_READS, TCL_TRACE WRI TES, and
TCL_TRACE_UNSETS. */

Next in list of traces associated with
a particular variable. */

struct VarTrace *nextPtr; /
} VarTrace;

Figure 6. Use side-by-side comments when declaring structure members and procedure
arguments.

the declaration, asin Figure 6. This comments before the declaration use the format given in
Section 5.2.

5.4 Curly braces: { goes at the end of aline

Open curly braces should not appear on lines by themselves. Instead, they should be placed at
the end of the preceding line. Close curly braces always appear asthe first non-blank character
on aline. Figure 5 shows how to use curly bracesin statementssuch asi f andwhi | e, and
Figure 6 shows how curly braces should be used in structure declarations. If ani f statement
has an el se clausethen el se appears on the same line as the preceding } and the following
{ . Close curly braces areindented to the samelevel asthe outer code, i.e., four spaces|essthan
the statements they enclose.

The only case where a{ appearson aline by itself istheinitial { for the body of aproce-
dure (see Figures 3 and 4).

Tcl/Tk Engineering Manual September 1, 1994 13

if ((linePtr->position.linelndex > position.linelndex)
|| ((linePtr->position.linelndex == position.linelndex)
&& ((1inePtr->position.charlndex + |inePtr->length)
> position.charlndex))) {
return;

}

line = Mk_GetLine(newPtr->filelnfoPtr->file,
linePtr->position.linelndex, (int *) NULL);

XDrawl mageSt ri ng(mxwPt r - >di spl ay, mxwpPtr->fil eW ndow,
mxwPt r->textGec, X, y + nxwPtr->fontPtr->ascent,
control, 2);

Figure 7. Continuation lines are indented 8 spaces.

Always use curly braces around compound statements, even if thereis only one statement
in the block. Thus you shouldn’t write code like

if (filePtr->nuniines == 0) return -1,
but rather

if (filePtr->nunlines == 0) {
return -1,
}

This approach makes code less dense, but it avoids potential mistakes when adding additional
lines to an existing single-statement block. It also makesit easier to set breskpoints in a debug-
ger, since it guarantees that each statement on is on a separate line and can be named individu-
ally.

There is one exception to the rule about enclosing blocksin{} . Fori f statementswith
cascaded el se i f clauses, you may use aform like the following:

if (strcnp(argv[1], "delete") == 0) {

} else if (stremp(argv[1], "get") == 0) {
} else if (strenp(argv[l], “"set”) == 0) {
} else {

Lo

5.5 Continuation lines are indented 8 spaces

You should use continuation lines to make sure that no single line exceeds 80 charactersin
length. Continuation lines should be indented 8 spaces so that they won't be confused with an
immediately-following nested block (see Figure 7). Pick clean places to break your lines for
continuation, so that the continuation doesn’t obscure the structure of the statement. For exam-
ple, if aprocedure call requires continuation lines, make sure that each argument ison asingle
line. If thetest for ani f or whi | e command spans lines, try to make each line have the same
nesting level of parenthesesif possible. | try to start each continuation line with an operator
suchas*, &&, or | | ; this makesit clear that the line is a continuation, since a new statement
would never start with such an operator.

5.6 Avoid macros except for simple things

#def i ne statements provide a fine mechanism for specifying constants symbolically, and
you should always use them instead of embedding specific numbersin your code. However, it
isgenerally a bad ideato use macros for complex operations; procedures are almost always
better (for example, you can set breakpoints inside procedures but not in the middle of mac-
ros). Theonly timethat it is OK to use#def i ne’sfor complex operationsisif the operations
are critical to performance and there is no other way to get the performance (have you mea-
sured the performance before and after to be sure it matters?).

Tcl/Tk Engineering Manual September 1, 1994 14

When defining macros, remember always to enclose the arguments in parentheses:
#define Mn(a, b) (((a) < (b)) ? (a) : (b))
Otherwise, if the macro isinvoked with acomplex argument suchasa*b orsmal | | | red it
may result in aparse error or, even worse, an unintended result that is difficult to debug.

6. Documenting code

The purpose of documentation is to save time and reduce errors. Documentation istypically
used for two purposes. First, people will read the documentation to find out how to use your
code. For example, they will read procedure headersto learn how to call the procedures. |de-
ally, people should haveto learn aslittle as possible about your code in order to useit correctly.
Second, people will read the documentation to find out how your code works internally, so
they can fix bugs or add new features; again, good documentation will allow them to make
their fixes or enhancements while learning the minimum possible about your code. More docu-
mentation isn't necessarily better: wading through pages of documentation may not be any eas-
ier than deciphering the code. Try to pick out the most important things that will help peopleto
understand your code and focus on these in your documentation.

6.1 Document things with wide impact

The most important things to document are those that affect many different pieces of a pro-
gram. Thusit is essential that every procedure interface, every structure declaration, and every
global variable be documented clearly. If you haven’t documented one of these thingsit will be
necessary to look at al the uses of the thing to figure out how it's supposed to work; this will
be time-consuming and error-prone.

On the other hand, things with only local impact may not need much documentation. For
example, in short procedures | don’t usually have comments explaining the local variables. If
the overall function of the procedure has been explained, and if there isn’t much code in the
procedure, and if the variables have meaningful names, then it will be easy to figure out how
they are used. On the other hand, for long procedures with many variables | usually document
the key variables. Similarly, when | write short procedures | don’t usually have any comments
in the procedure’s code: the procedure header provides enough information to figure out what
isgoing on. For long procedures | place a comment block before each major piece of the pro-
cedure to clarify the overall flow through the procedure.

6.2 Don’t just repeat what’s in the code

The most common mistake | see in documentation (besidesit not being there at all) isthat it
repeats what is already obvious from the code, such asthistrivia (but exasperatingly common)

example:
/*
* I ncrenment i.
*/
i +=1;

Documentation should provide higher-level information about the overall function of the code,
hel ping readers to understand what a complex collection of statements really means. For exam-
ple, the comment
/ *
* Probe into the hash table to see if the synbol exists.
*/
islikely to be much more helpful than

Tcl/Tk Engineering Manual September 1, 1994 15

/*

* Mask off all but the lower 8 bits of x, then index into table

* t, then traverse the list looking for a character string

* jdentical to s.

*/
Everything in this second comment is probably obvious from the code that follows it.

Another thing to consider in your comments is word choice. Use different wordsin the

comments than the words that appear in variable or procedure names. For example, the com-
ment

VmvapPage - -

* F X X *

Map a page.

which appearsin the header for the Sprite procedure VmMapPage, doesn’t provide any new
information. Everything in the comment is already obvious from the procedure’s name. Here
is amuch more useful comment:

/*

* VnMapPage - -

*

* Make the given physical page addressable in the kernel’'s
* virtual address space. This procedure is used when the
* kernel needs to access a user’'s page.

*

This comment tells why you might want to use the procedure, in addition to what it does,
which makes the comment much more useful.

6.3 Document each thing in exactly one place

Systems evolve over time. If something is documented in several places, it will be hard to keep
the documentation up to date as the system changes. Instead, try to document each major
design decision in exactly one place, as near as possible to the code that implements the design
decision. For example, put the documentation for each structure right next to the declaration
for the structure, including the general rulesfor how the structureis used. You need not explain
the fields of the structure again in the code that uses the structure; people can always refer
back to the structure declaration for this. The principal documentation for each procedure goes
in the procedure header. There’s no need to repeat this information again in the body of the
procedure (but you might have additional comments in the procedure body to fill in details not
described in the procedure header). If alibrary procedure is documented thoroughly in a man-
ual entry, then I may make the header for the procedure very terse, simply referring to the man-
ual entry. For example, | use thisterse form in the headers for all Tcl command procedures,
since there is a separate manual entry describing each command.

The other side of this coin isthat every major design decision needs to be documented at
least once. If adesign decisionis used in many places, it may be hard to pick a central placeto
document it. Try to find a data structure or key procedure where you can place the main body
of comments; then reference this body in the other places where the decisionis used. If al else
fails, add a block of commentsto the header page of one of the filesimplementing the decision.

6.4 Write clean code

The best way to produce a well-documented system is to write clean and simple code. This
way there won't be much to document. If code is clean, it means that there are afew simple
ideas that explain its operation; al you have to do is to document those key ideas. When writ-
ing code, ask yourself if there is a simple concept behind the code. If not, perhaps you should
rethink the code. If it takes alot of documentation to explain a piece of code, it isasign that
you haven’'t found an elegant solution to the problem.

Tcl/Tk Engineering Manual September 1, 1994 16

6.5 Document as you go

It is extremely important to write the documentation as you write the code. It's very tempting
to put off the documentation until the end; after all, the code will change, so why waste time
writing documentation now when you'll have to change it later? The problem is that the end
never comes —there is always more code to write. Also, the more undocumented code that you
accumulate, the harder it isto work up the energy to document it. So, you just write more
undocumented code. I’ ve seen many people start a project fully intending to go back at the end
and write all the documentation, but I’ ve never seen anyone actually do it.

If you do the documentation as you go, it won’t add much to your coding time and you
won't have to worry about doing it later. Also, the best time to document code is when the key
ideas are fresh in your mind, which iswhen you're first writing the code. When | write new
code, | write al of the header comments for a group of procedures before | fill in any of the
bodies of the procedures. Thisway | can think about the overall structure and how the pieces
fit together before getting bogged down in the details of individual procedures.

6.6 Document tricky situations

If code is non-obvious, meaning that its structure and correctness depend on information that
won't be obvious to someone reading it for the first time, be sure to document the non-obvious
information. One good indicator of atricky situationisabug. If you discover a subtle property
of your program while fixing a bug, be sure to add a comment explaining the problem and its
solution. Of course, it's even better if you can fix the bug in away that eliminates the subtle
behavior, but thisisn't always possible.

7. Testing

One of the environments where Tcl works best isfor testing. If all the functionality of an appli-
cation is available as Tcl commands, you should be able to write Tcl scripts that exercise the
application and verify that it behaves correctly. For example, Tcl contains alarge suite of tests
that exercise nearly al of the Tcl functionality. Whenever you write new code you should write
Tcl test scripts to go with that code and save the tests in files so that they can be re-run later.
Writing test scriptsisn’t astedious as it may sound. If you're developing your code carefully
you're aready doing alot of testing; all you need to do is type your test cases into a script file
where they can be re-used, rather than typing them interactively where they vanish into the
void after they’re run.

7.1 Basics

Tests should be organized into script files, where each file contains a collection of related tests.
Individual tests should be based on the proceduret est , just likein the Tcl and Tk test suites.
Here are two examples:
test expr-3.1 {floating-point operators} {
expr 2.3*.6
} 1.38
test expr-3.2 {floating-point operators} {
list [catch {expr 2.3/0} nsg] $nsg
} {1 {divide by zero}}
t est isaprocedure defined in ascript file named def s, whichissour ced by each test file.
t est takesfour arguments; atest identifier, a string describing the test, atest script, and the
expected result of the script. t est evaluates the script and checks to be sure that it produces
the expected result. If not, it prints a message like the following:

Tcl/Tk Engineering Manual September 1, 1994 17

==== expr-3.1 floating-point operators
==== Contents of test case:

expr 2.3*.6
==== Result was:
---- Result should have been:

---- expr-2.1 FAILED

To run a set of tests, you start up the application and sour ce atest file. If all goeswell no
messages appear; if errors are detected, a message is printed for each one.

The test identifier, such asexpr - 3. 1, isprinted when errors occur. It can be used to
search atest script to locate the source for afailed test. Thefirst part of the identifier, such as
expr , should be the same as the name of the test file, except that the test file should have a
. t est extension, such asexpr . t est . The two numbers allow you to divide your testsinto
groups. Thetestsin a particular group (e.g., al theexpr - 3. n tests) relate to asingle sub-fea-
ture, such asasingle C procedure or asingle option of a Tcl command. The tests should appear
in the test file in the same order as their numbers.

The test name, such asf | oat i ng- poi nt oper at or s, isprinted when errors occur.
It provides human-readable information about the general nature of the test.

Before writing tests | suggest that you look over some of thetest filesfor Tcl and Tk to see
how they are structured. You may also want to look at the README files in the Tcl and Tk test
directoriesto learn about additional features that provide more verbose output or restrict the set
of teststhat are run.

7.2 Organizing tests

Organize your tests to match the code being tested. The best way to do thisis to have one test
filefor each source codefile, with the name of the test file derived from the name of the source
filein an obviousway (e.g.t ext W nd. t est contains tests for the codein

t kText W nd. c¢). Within the test file, have one group of tests for each procedure (for exam-
ple al thet ext W nd- 2. ntestsint ext W nd. t est arefor the procedure

TkText W ndowCrrd). The order of the tests within a group should be the same as the order

of the code within the procedure. This approach makes it easy to find the tests for a particular

piece of code and add new tests as the code changes.

The Tcl test suite was written along time ago and uses a different style where thereis one
file for each Tcl command or group of related commands, and the tests are grouped within the
file by sub-command or features. In this approach the relationship between tests and particular
pieces of code is much less obvious, so it is harder to maintain the tests as the code evolves. |
don’t recommend using this approach for new tests.

7.3 Coverage

When writing tests, you should attempt to exercise every line of source code at least once.
There will be occasionally be code that you can’t exercise, such as code that exits the applica-
tion, but situations like this are rare. You may find it hard to exercise some pieces of code
because existing Tcl commands don’t provide fine enough control to generate al the possible
execution paths (for example, at the time | wrote the test suite for Tcl’s dynamic string facility
there were very few Tcl commands using the facility; some of the procedures were not called at
al). In situations like this, write one or more new Tcl commands just for testing purposes. For
example, thefilet cl Test . ¢ inthe Tcl source directory contains a command

t est dst ri ng, which provides anumber of optionsthat allow al of the dynamic string code
tobeexercised. t cl Test . c isonly included in a special testing version of t cl sh, so the

t est dst ri ng command isn’'t present in normal Tcl applications. Use a similar approach in
your own code, where you have an extrafile with additional commands for testing.

Tcl/Tk Engineering Manual September 1, 1994 18

7.4

It's not sufficient just to make sure each line of codeis executed by your tests. In addition,
your tests must discriminate between code that executes correctly and code that isn’t correct.
For example, write tests to make sure that thet hen and el se branchesof eachi f statement
are taken under the correct conditions. For loops, run different tests to make the |oop execute
zero times, one time, and two or more times. If a piece of code removes an el ement from alist,
try cases where the element to be removed is the first element, last element, only element, and
neither first element nor last. Try to find all the places where different pieces of codeinteract in
unusual ways, and exercise the different possible interactions.

Memory allocation

Tcl and Tk use a modified memory allocator that checks for several kinds of memory alloca-
tion errors, such as freeing a block twice, failing to free a block, or writing past the end of a
block. In order to use this allocator, don’t call mal | oc, free, orreal | oc directly. Call
ckal | oc instead of mal | oc, ckf r ee instead of f r ee, and ckr eal | oc instead of

r eal | oc. These procedures behaveidentically tonmal | oc,free,andr eal | oc except that
they monitor memory usage. Ckal | oc, ckf r ee, and ckr eal | oc are actually macros that
can be configured with a compiler switch: if TCL_MEM DEBUGIs defined, they perform the
checks but run more slowly and use more memory; if TCL_ MEM DEBUGI s not defined, then
the macros arejust #def i nedtomal | oc,free,andreal | oc sothereisno pendty in
efficiency. | awaysrunwith TCL_MEM DEBUGIn my devel opment environment and you
should too. Official releases typically do not have TCL_ MEM DEBUG st.

If you set TCL_MEM _DEBUG anywhere in your code then you must set it everywhere
(including the Tcl and Tk libraries); the memory allocator will get hopelessly confused if a
block of memory is allocated with mal | oc and freed with ckf r ee, or allocated with ckal -
| oc and freed withf r ee.

Thereisnothing equivaent to cal | oc in the debugging memory allocator. If you need a
new block to be zeroed, call nenset to clear its contents.

If you compilewith TCL_MEM DEBUG, then an additional Tcl command named nenor y
will appear in your application (assuming that you’ re using the standard Tcl or Tk main pro-
gram). The menor y command has the following options:

menory active file
Dumpsalist of all allocated blocks (and where they were allocated) tof i | e. Memory
leaks can be tracked down by comparing dumps made at different times.

nmenory break_on_mal | oc nunber
Enter the debugger after nunber callsto ckal | oc.

menory info
Prints areport containing the total allocations and frees since Tcl began, the number of
blocks currently allocated, the number of bytes currently allocated, and the maximum
number of blocks and bytes allocated at any one time.

menory init onoff
If onof f ison, new blocks of memory are initialized with astrange value to help
locate uninitialized uses of the block. Any other value for onof f turnsinitialization
off. Initidlization is on by default.

menory trace onof f
If onof f ison, onelinewill be printed to stderr for each call tockal | oc. Any other
value for onof f turnstracing off. Tracing is off by default.

menory trace_on_at _nmall oc nunber
Arranges for tracing to be turned on after nurber callstockal | oc.

Tcl/Tk Engineering Manual September 1, 1994 19

menory val i date onof f
If onof f ison, guard zones around every allocated block are checked on every call to
ckal | oc or ckf r ee in order to detect memory overruns as soon as possible. If
onof f isanything other than on, checks are made only during ckf r ee calsand only
for the block being freed. Memory validation has a very large performance impact, so
itis off by default.

The debugging memory allocator isinferior in many ways to commercial products like
Purify, so its worth using one of the commercial products if possible. Even so, please use
ckal | oc and ckf r ee everywherein your code, so that other people without access to the
commercia checkers can still use the Tcl debugging allocator.

7.5 Fixing bugs

Whenever you find abug in your code it means that the test suite wasn’t complete. As part of
fixing the bug, you should add new tests that detect the presence of the bug. | recommend writ-
ing the tests after you' ve located the bug but before you fix it. That way you can verify that the
bug happens before you implement the fix and goes away afterwards, so you'll know you've
really fixed something. Use bugsto refine your testing approach: think about what you might
be able to do differently when you write tests in the future to keep bugs like this one from
going undetected.

7.6 Tricky features

| also use tests as away of illustrating the need for tricky code. If apiece of code has an
unusua structure, and particularly if the code is hard to explain, | try to write additional tests
that will fail if the code isimplemented in the obvious manner instead of using the tricky
approach. This way, if someone comes along later, doesn’t understand the documentation for
the code, decides the complex structure is unnecessary, and changes the code back to the sim-
ple (but incorrect) form, the test will fail and the person will be able to use the test to under-
stand why the code needs to be the way it is. lllustrative tests are not a substitute for good
documentation, but they provide a useful addition.

7.7 Testindependence

Try to make tests independent of each other, so that each test can be understood in isolation.
For example, one test shouldn’t depend on commands executed in a previous test. Thisis
important because the test suite allows tests to be run selectively: if the tests depend on each
other, then false errors will be reported when someone runs afew of the tests without the oth-
ers.

For convenience, you may execute afew statements in the test file to set up atest configu-
ration and then run several tests based on that configuration. If you do this, put the setup code
outside the callsto thet est procedure so it will always run even if theindividua tests aren’t
run. | suggest keeping a very simple structure consisting of setup followed by a group of tests.
Don't perform some setup, run afew tests, modify the setup slightly, run afew more tests,
modify the setup again, and so on. If you do this, it will be hard for people to figure out what
the setup is at any given point and when they add tests later they are likely to break the setup.

8. Porting issues

The X Window System, ANSI C, and POSIX provide a standard set of interfaces that make it
possible to write highly portable code. However, some additional work will still be needed if
codeisto port among all of the UNIX platforms. As Tcl and Tk move from the UNIX world
onto PCs and Macintoshes, porting issues will become even more important. This section con-
tains afew tips on how to write code that can run on many different platforms.

Tcl/Tk Engineering Manual September 1, 1994 20

8.1 Stick to standards

The easiest way to make your code portable isto use only library interfaces that are available
everywhere (or nearly everywhere). For example, the ANSI C library procedures, POSIX sys-
tem calls, and Xlib windowing calls are available on many platforms; if you code to these stan-
dards your packages will be quite portable. Avoid using system-specific library procedures,
since they will introduce porting problems.

8.2 Minimize #ifdefs

Although there will be situations where you have to do things differently on different
machines, #i f def sare rarely the best way to deal with these problems. If you load up your
codewith#i f def statements based on various machines and operating systems, the code will
turn into spaghetti. #i f def smake code unreadable: itishard tolook at #i f def -ed code and
figure out exactly what will happen on any one machine. Furthermore, #i f def sencourage a
style wherelots of machine dependencies creep all through the code; it is much better to isolate
machine dependenciesin afew well-defined places.

Thus you should almost never use #i f def s. Instead, think carefully about the waysin
which systems differ and define procedural interfaces to the machine-dependent code. Then
provide a different implementation of the machine-dependent procedures for each machine.
When linking, choose the version appropriate for the current machine. Thisway &l of the
machine dependencies for a particular system are located in one or afew filesthat are totally
separate from the machine-dependent code for other systems and from the main body of your
code. The only “conditiona” code left will be the code that selects which version to link with.

You won't be ableto eliminate #i f def scompletely, but please avoid them as much as
possible. If you end up with code that hasalot of #i f def s, this should be awarning to you
that something iswrong. See if you can find a way to re-organize the code (perhaps using the
techniques described later in this section) to reduce the number of #i f def s.

8.3 Organize by feature, not by system

Don’t think about porting issuesin terms of specific systems. Instead, think in terms of specific
features that are present or absent in the systems. For example, don't divide your code up
according to what is needed in HP-UX versus Solaris versus Windows. Instead, consider what
features are present in the different systems; for example, some systems have awai t pi d pro-
cedure, while othersdon’t yet provide one, and some systems have ANSI C compilersthat sup-
port procedure prototypes, while some systems do not.

The feature-based approach has a number of advantages over the system-based approach.
First, many systems have features in common, so you can share feature-based porting code
among different systems. Second, if you think in terms of features then you can consider each
feature separately (“what do | do if thereisnowai t pi d?’); this replaces one large problem
with several smaller problems that can be dealt with individually. Lastly, theaut oconf pro-
gram can be used to check for the presence or absence of particular features and configure your
code automatically. Once you' ve gotten your code running on several different systems, you'll
find that many new systems can be handled with no additional work: their features are similar
to those in systems you' ve aready considered, so aut oconf can handle them automatically.

8.4 Use emulation

One of the cleanest ways to handle porting problemsis with emulation: assume the existence
of certain procedures, such asthose in the POSIX standard, and if they don’'t exist on agiven
system then write procedures to emulate the desired functionality with the facilities that are
present on the system. For example, when Tcl first started being used widely | discovered that
many systems did not support thewai t pi d kernel call, even though it was part of the POSIX
standard. So, | wrote awai t pi d procedure myself, which emulated the functionality of

wai t pi d usingthewai t andwai t 3 kernel calls. The best way to emulate wai t pi d was

Tcl/Tk Engineering Manual September 1, 1994 21

withwai t 3, but unfortunately wai t 3 wasn't available everywhere either, so the emulation
worked differently on systems that had wai t 3 and those that supported only wai t . The

aut oconf program checksto see which of the kernel calls are available, includes the emula-
tionfor wai t pi d if itisn't available, and sets a compiler flag that indicates to the emulation
code whether or not wai t 3 isavailable.

You can also emulate using #def i nesin aheader file. For example, not all systems sup-
port symbolic links, and those that don’t support symbolic links don’t support the | st at ker-
nel call either. For these systems Tcl uses st at to emulatel st at with the following
statementint cl Uni x. h:

#define | stat stat

If aheader fileismissing on a particular system, write your own version of the header file
to supply the definitions needed by your code. Then you can #i ncl ude your versionin your
code if the system doesn’t have a version of its own. For example, here isthe codein
t cl Uni x. h that handlesuni st d. h, whichisn’t yet available on al UNIX systems:

#i f def HAVE_UNI STD H

#i ncl ude <uni std. h>

#el se

#i ncl ude "conpat/ unistd. h"

#endi f
Theconf i gur e script generated by aut oconf checksfor the existence of uni st d. hin
the system include directories and sets HAVE_UNI STD_Hif it is present. If it isn't present,
t ¢l Uni x. h includes aversion from the Tcl source tree.

8.5 Use autoconf

The GNU aut oconf program provides a powerful way to configure your code for different
systems. With aut oconf you write ascript called conf i gur e. i n that describes the port-
ing issues for your software in terms of particular features that are needed and what to do if
they aren’t present. Before creating arelease of your software you run aut oconf , which pro-
cessesconf i gur e. i n and generates ashell script called conf i gur e. You then include
conf i gur e with your distribution.

When it istimeto install the distribution on a particular system, the installer runs the
confi gur e script. conf i gur e pokes around in the system to find out what features are
present, then it modifies the Makef i | e accordingly. The modifications typically consist of
compiling additional files to substitute for missing procedures, or setting compiler flags that
can be used for conditional compilation in the code.

8.6 Porting header file

In spite of all the above advice, you will still end up needing some conditional compilation, for
example to include alternate header files where standard ones are missing or to #def i ne
symbols that aren’t defined on the system. Put all of this code in the porting header file for the
package, then #i ncl ude this header file in each of the source files of the package. With this
approach you only need to change asingle place if you have to modify your approach to porta-
bility, and you can see all of the porting issuesin one place. You canlook att cl Port . h and
t kPor t . h for examples of porting header files.

9. Miscellaneous

9.1 Changes files

Each package should contain afile named changes that keepsalog of all significant changes
made to the package. The changes file provides away for users to find out what's new in
each new release, what bugs have been fixed, and what compatibility problems might be intro-

Tcl/Tk Engineering Manual September 1, 1994 22

duced by the new release. The changes file should be in chronological order. Just add short
blurbsto it each time you make a change. Here is a sample from the Tk changes file:

5/ 19/ 94 (bug fix) Canvases didn’t generate proper Postscript for
stippled text.

5/ 20/ 94 (new feature) Added "bell" conmmand to ring the display’'s
bel I .

5/ 26/ 94 (feature renoved) Renoved support for "fill" justify node
from Tk_CetJustify and fromthe TK_CONFI G_JUSTI FY configuration
option. None of the built-in wi dgets ever supported this node
anyway.
*** POTENTI AL | NCOVPATI BI LI TY ***
The entriesin the changes file can be relatively terse; once someone finds a change that is
relevant, they can always go to the manual entries or code to find out more about it. Be sure to
highlight changes that cause compatibility problems, so people can scan the changes file
quickly to locate the incompatibilities.

Tcl/Tk Engineering Manual September 1, 1994 23

