
Tcl Package for Sqlite3
database schema migration

Urmita Banerjee, Yili Zhang, Gunes Koru, Clif Flynt, Stephen Huntley, and Dae-
young Kim

Health IT Lab at UMBC

Department of Information System

University of Maryland, Baltimore County, Baltimore, MD

1

Table of Contents

• Introduction

•Methods

•Results

• Limitations

•Conclusion

2

Introduction

• What is Database schema migration?
• Multiphase process facilitating incremental or reversal changes of a relational database

schema (Evolutionary Database Evolution,2016).

• Application evolution over time includes code and schema changes (aws-
databasemigration,2016). Database dependent application development progresses
with evolution of source code in tandem with the database (Evolutionary Database
Evolution,2016).

• Modifying schema parts without affecting existing data and program can often
be challenging.

• To ease this process, automated migration of schema comes into view which
allows to adapt the database as per requirement and track the granular changes
affecting it.

• Aim: Introduce a solution for database migration that will sustain frequent
database schema changes in any Tcl and Sqlite3 based application.

3

Methods

• The migration package was built using Tcl programming language to
support schema migration in Sqlite3 database.

• The package includes several functions each corresponding to basic
database operations like table creation, table deletion, adding a column,
removing a column, and table renaming.

• Using the package, the functions can be executed which generates Tcl
migration script files . These Tcl script files include ”Up” function and
”Down” function.
• The ”Up” function performs forward change in the database while the ”Down”

function brings about a backward change in the database.

• An addTable Up function creates a table and an addTable Down function removes
the table and takes the database back to the state prior to the table creation.

4

Methods-cont’d

• The name of these script files are timestamped along with the action
taken and the name of table or column modified.

• The package allows the timestamped script files to execute a series of
data schema changes in time sequence, both in forward and inverted
order.
• Executing scripts serially with ”Up” functions can establish the database, and

executing scripts in reversed order with ”Down” functions can degenerate the
database

• With evolution of our software application, the data model also
evolved. This progress was handled by running necessary Up and Down
migration scripts.

• In our system the execution of the migration files is recorded in a table
called migration so that over the time how the database changed and
emerged in time can be studied.

5

Methods- Migration function syntax

• Migration::dbName databasename

• Migration::addTable TableName args

• Migration::deleteTable TableName

• Migration::renameTable oldTableName newTableName

• Migration::addColumn TableName ColumnName ColumnType

• Migration::deleteColumn TableName ColumnName

• Migration::changeSchema cmd range args
• cmd is Up/Down
• range is –s/-f
• args is migration script file names

6

Methods- Using the migration package

• Below are some sample steps carried out typically to utilize the migration
package in achieving database schema migration:

package require Migration

package require sqlite3

Migration::dbName test.db

Migration::addTable tbl1 { id integer primary key } {name text } { age text }

Migration::addTable tbl2 { id integer primary key } { schoolname text }
{schooladdress text } { studentid integer } { foreign key (studentid) references
tbl1 (id)}

• The above code steps create two migration script files named
M00180924115537_ addtable_tbl1.tcl and M00180924115540_addtable_tbl2.tcl

7

Methods- Using migration package cont’d

• The add table migration files can then be invoked from the source code for the
desired database modification.

Migration::dbName finaldb.sqlite3
Migration::changeSchema up −s M00180924115537_addtable_tbl1.tcl
M00180924115537_addtable_tbl1.tcl

• A series of script files can also be mentioned in the above statement to execute a
sequential pattern of database modifications as shown below.

Migration::dbName finaldb.sqlite3
Migration::changeSchema up −s M00180924115537_addtable_tbl1.tcl
M00180924120501_addtable_tbl3.tcl

• In the above example all scripts starting from M00180924115537_addtable_tbl1.tcl to
M00180924115537_ addtable_tbl3.tcl are serially executed.

• Based on this example we can conclude that the above statements introduce three
new tables into the database namely, tbl1, tbl2, tbl3.

8

Methods- Add table script file contents

proc up {} {
mig transaction {

mig eval ”CREATE TABLE IF NOT EXISTS tbl1 (id integer primary key , name text , age text)”
mig eval ”INSERT INTO migration (DQT Version , Time , Migration File , Action) values

(‘$::DQTVersion ’ , ’[clock format [clock seconds] −format %y%m%d−%H:%M:%S] ’ ,
‘$Migration::MigFile ’ , ’ Up ’) ”

}
}

proc down {} {
mig transaction {

mig eval ”DROP TABLE IF EXISTS tbl1”
mig eval ”INSERT INTO migration (DQT Version , Time , Migration File , Action) values

(‘$::DQTVersion ’ , ’[clock format [clock seconds] −format %y%m%d−%H:%M:%S] ’ ,
‘$Migration::MigFile ’ , ’ Down ’) ”

}
}

9

Methods- Delete table script file contents
proc up {} {

mig transaction {
mig eval ”DROP TABLE IF EXISTS tbl2 ”
mig eval ”INSERT INTO migration (DQT Version , Time , Migration File , Action) values

(’$::DQTVersion ’ , ’[clock format [clock seconds] −format %y%m%d−%H:%M:%S] ’
,’$Migration::MigFile ’ , ’ Up’) ”

}
}

proc down {} {
mig transaction {

mig eval ”CREATE TABLE IF NOT EXISTS tbl2 (id integer primary key schoolname text,
schooladdress text , studentid integer , foreign key (studentid) references tbl1 (id))”

mig eval ”INSERT INTO migration (DQT Version , Time , Migration File , Action) values
(’$::DQTVersion ’ , ’[clock format [clock seconds] −format %y%m%d−%H:%M:%S] ’
,‘$Migration::MigFile ’ , ’ Down’) ”

}
}

10

Results
• The migration package was developed to support database schema changes in

an application developed in Health IT Lab, UMBC.

• The timestamped migration files helped the database evolve easily and also
allowed to track the database schema modification over time.

• To reset the database to an older version , older necessary script files were run.

• With application evolution, the data model underwent changes and it was
handled by the package so the data model dint need to be established from
scratch.

• Running required migration script files helped construct expected database
scenarios, and enabled data schema change without affecting the existing
database.

• During testing, harmony between database structure and application code
could be tested using schema migration process on test database (Evolutionary
Database Evolution,2016). 11

Results cont’d

• Some of the implemented migration examples are as follows:

Migration::dbName finaldb.sqlite3

Migration::changeSchema up −s M00180925120511_deletetable_tbl1.tcl
M00180925123012_deletetable_tbl3.tcl

Migration::changeSchema up −s M00180925155537_addtable_newtbl1.tcl
M00180925162534 addtable newtbl3 . tcl

Migration::changeSchema up –s M00180928154322_renametable_tbl4_newtbl4.tcl
M00180928154322_renametable_tbl4_newtbl4.tcl

• The above statements integrated in the source code drops the tables tbl1, tbl2
and tbl3 from the database and creates three new tables namely, newtbl1,
newtbl2, and newtbl3 and renames an existing table tbl4 to newtbl4.

• As a result we have a new data model implemented without having to develop
it from the beginning.

12

Limitations

• Preservation of data is a concern when it comes to migration and it is
not guaranteed reliable as schema changes like column deletion can
affect data negatively.

• In cases of large and old databases, migration can lead to unexpected
problems. If there is still data introduced by old version that was not
removed properly or if the relationships between the entities are not
well thought before executing the migration steps , it can lead to
integrity failures (Evolutionary Database Evolution,2016).

13

Conclusion

• Database Schema Migration is an essential process in agile software
development.

• It helps adapting database evolution by allowing the database schema to
be updated to a new state or reverted to an earlier state and its evolution
can be tracked.

• It is time efficient and its utilization removes the need to fully redesign
data models up-front with every little alterations in the database.

• For system like ours which demands database structure to be compatible
with the code expectations, the migration scripts allowed to tackle
changes in the database structure without any failure in running the
application.

14

Thank you!

15

