
Tcl Package for Sqlite3 database schema
migration

Urmita Banerjee, Yili Zhang, Güneş Koru, Clif Flynt, Stephen Huntley, and Dae-young Kim

Health IT Lab at UMBC
Department of Information System

University of Maryland, Baltimore County, Baltimore, MD

Abstract—Health IT Lab at UMBC leveraged the
easy relationship between SQLite and Tcl/Tk to
develop a package which maintains schema migration
by using Tcl on the sqlite3 database. The package
allows to update or revert the database’s schema to a
newer or older version with evolution of the database.

I. INTRODUCTION

Database schema migration refers to a mul-
tiphase process which facilitates incremental
or reversal changes of a relational database
schema [1]. Application modernization over
time includes code and schema changes [2].
When developing a database dependent appli-
cation software the development of the source
code occurs in tandem with the evolution of the
database [1]. The program code typically has
fixed expectations of what elements should be
present in the database while interacting with
it. So only the database schema version against
which the code was developed is considered
compatible to run as part of the program [1].
Efficiently tracking and navigating around the
schema parts without affecting the existing
database and program can often be challenging.
To ease this process, automated migration of
schema comes into view which basically allows
to adapt the database as per requirement and
track the granular changes affecting it. To as-
sist this cause while developing an application
using Tcl and Sqlite3, a migration package
was developed using Tcl. This package allows

Sqlite3 database schema migration by gener-
ating forward and backward schema modifica-
tion scripts and executing them to handle the
database schema change.

II. METHODS

A. About the Migration Package

The migration package developed using Tcl
programming language caters to basic database
operations like table creation, table deletion,
adding a column, removing a column, and
table renaming. Functions were created in the
migration package to fulfill the requirements
of these changes, with generation of Tcl script
files for each of these data schema changes.
Each function takes up an action of database
schema modification, and the script generated
along with the function execution includes an
”Up” function and a ”Down” function. The
”Up” function performs forward change in the
database while the ”Down” function brings
about a backward change in the database. For
instance, an addTable Up function for a cer-
tain table creates the table and an addTable
Down function removes the table and takes the
database back to the state prior to the table
creation.

Sourcing the migration package in an ap-
plication code sanctions desired database mi-
gration functions to be run. The execution of
the migration functions creates migration script

files. The ”Up” function or ”Down” function
of the necessary migration script files can be
invoked from the application source code to
perform desired database changes. The name
of these script files are timestamped along with
the action taken and the name of table or col-
umn modified. These timestamped migration
files help track the database schema modifica-
tion version. The migration package allows the
timestamped script files to execute a series of
data schema changes in time sequence, both
in forward and inverted order. Thus, execut-
ing scripts serially with ”Up” fucntions can
establish the database, and executing scripts
in reversed order with ”Down” functions can
degenerate the database.

In our application during initial stages of
software development, the Up scripts for
database modification were run to establish the
data model. With evolution of the application,
the data model also evolved. This progress was
easily handled by running necessary Up and
Down scripts. In our system we also maintain
a record of the execution of the migration files
in a table called migration so that over the time
we can study how the database changed and
emerged in time.

B. Utilizing the Migration Package
Below are some sample steps carried out

to utilize the migration package in achieving
database schema migration:
package r e q u i r e M i g r a t i o n
package r e q u i r e s q l i t e 3

M i g r a t i o n : : dbName t e s t . db

M i g r a t i o n : : addTable t b l 1 { i d i n t e g e r \
pr imary key } {name t e x t } {age t e x t }

M i g r a t i o n : : addTable t b l 2 { i d i n t e g e r \
pr imary key } { schoolname t e x t } \
{ s c h o o l a d d r e s s t e x t } { s t u d e n t i d i n t e g e r } \
{ f o r e i g n key (s t u d e n t i d) r e f e r e n c e s \
t b l 1 (i d)}

The above code steps create
two migration script files named
M00180924115537 addtable tbl1.tcl and

M00180924115540 addtable tbl2.tcl. The
files will have both Up and Down functions in
them. Typically the contents of the files look
like this:

proc up {} {
mig t r a n s a c t i o n {

mig e v a l ”CREATE TABLE IF NOT EXISTS \
t b l 1 (i d i n t e g e r pr imary key , \
name t e x t , age t e x t)”

mig e v a l ”INSERT INTO m i g r a t i o n \
(DQT Version , Time , M i g r a t i o n F i l e , \
A c t i o n) v a l u e s (’ $: : DQTVersion ’ , \
’ [c l o c k f o r m a t [c l o c k s e c o n d s] \
−f o r m a t %y%m%d−%H:%M:%S] ’ , \
’ $ M i g r a t i o n : : MigFi le ’ , ’ Up ’) ”

}
}

proc down {} {
mig t r a n s a c t i o n {

mig e v a l ”DROP TABLE IF EXISTS t b l 1 ”

mig e v a l ”INSERT INTO m i g r a t i o n \
(DQT Version , Time , M i g r a t i o n F i l e , \
A c t i o n) v a l u e s (’ $: : DQTVersion ’ , \
’ [c l o c k f o r m a t [c l o c k s e c o n d s] \
−f o r m a t %y%m%d−%H:%M:%S] ’ , \
’ $ M i g r a t i o n : : MigFi le ’ , ’ Down ’) ”

}
}

proc up {} {
mig t r a n s a c t i o n {

mig e v a l ”CREATE TABLE IF NOT EXISTS \
t b l 2 (i d i n t e g e r pr imary key , \
schoolname t e x t , s c h o o l a d d r e s s t e x t , \
s t u d e n t i d i n t e g e r , f o r e i g n key (s t u d e n t i d) \
r e f e r e n c e s t b l 1 (i d)) ”

mig e v a l ”INSERT INTO m i g r a t i o n \
(DQT Version , Time , M i g r a t i o n F i l e , \
A c t i o n) v a l u e s (’ $: : DQTVersion ’ , \
’ [c l o c k f o r m a t [c l o c k s e c o n d s] \
−f o r m a t %y%m%d−%H:%M:%S] ’ , \
’ $ M i g r a t i o n : : MigFi le ’ , ’ Up ’) ”

}
}

proc down {} {
mig t r a n s a c t i o n {

mig e v a l ”DROP TABLE IF EXISTS t b l 2 ”

mig e v a l ”INSERT INTO m i g r a t i o n \
(DQT Version , Time , M i g r a t i o n F i l e , \
A c t i o n) v a l u e s (’ $: : DQTVersion ’ , \
’ [c l o c k f o r m a t [c l o c k s e c o n d s] \
−f o r m a t %y%m%d−%H:%M:%S] ’ , \
’ $ M i g r a t i o n : : MigFi le ’ , ’ Down ’) ”

}
}

These add table migration files can then be
invoked from the source code for the desired
database modification.
M i g r a t i o n : : dbName f i n a l d b . s q l i t e 3

M i g r a t i o n : : changeSchema up −s \
M00180924115537 add tab le tb l1 . t c l \
M00180924115537 add tab le tb l1 . t c l

A series of script files can also be mentioned
in the above statement to execute a sequential
pattern of database modifications as shown
below.
M i g r a t i o n : : dbName f i n a l d b . s q l i t e 3

M i g r a t i o n : : changeSchema up −s \
M00180924115537 add tab le tb l1 . t c l \
M00180924120501 add tab le tb l3 . t c l

All scripts starting from
M00180924115537 addtable tbl1.tcl to
M00180924115537 addtable tbl3.tcl are
serially executed. For the sake of this example
we can assume that the above statements
introduce three new tables into the database
namely, tbl1, tbl2, tbl3. Similarly other
database operations like renaming a table or
adding a column can also be performed by
invoking the desired modification scripts in
the source code.

III. RESULTS

The migration package was used in an ap-
plication developed in Health IT Lab, UMBC.

The migration scripts obtained from the pack-
age were integrated into the code as part of
the requirement. The migration package helped
construct the expected database scenarios, and
enabled data schema change without affecting
the existing database. With progress and evo-
lution of the application, the data model also
evolved and it was handled easily by running
migration scripts.

Some of the implemented migration exam-
ples are as follows: The Up Add Table function
for a particular entity introduces that table into
the data model while the Down Add Table
function removes the particular table from the
schema if it exists and reverts the database to
an older version. Similarly an Up Delete Table
function for a particular entity successfully
deletes the table from the database while Down
Delete Table function inserts the table back into
the database and constructs an earlier state of
the database. The Up Rename Table function
allows to give an existing table a new name
while the Down Rename Table function allows
the table to switch back to an older name.

In situations where the data model under-
went major changes that altered the existing
entity relationships i.e., deleted many existing
tables and created new tables and relationships,
the migration package enabled a more system-
atic and controlled establishment of the new
data model without having to develop from
scratch.

The below example explains the above case:

M i g r a t i o n : : dbName f i n a l d b . s q l i t e 3

M i g r a t i o n : : changeSchema up −s \
M 0 0 1 8 0 9 2 5 1 2 0 5 1 1 d e l e t e t a b l e t b l 1 . t c l \
M 0 0 1 8 0 9 2 5 1 2 3 0 1 2 d e l e t e t a b l e t b l 3 . t c l

M i g r a t i o n : : changeSchema up −s \
M00180925155537 addtable newtb l1 . t c l \
M00180925162534 addtable newtb l3 . t c l

The above statements integrated in
the source code runs the scripts from
M00180925120511 deletetable tbl1.tcl to
M00180925123012 deletetable tbl3.tcl and
M00180925155537 addtable newtbl1.tcl to

M00180925162534 addtable newtbl3.tcl and
drops the tables tbl1, tbl2 and tbl3 from the
database and creates three new tables namely,
newtbl1, newtbl2, and newtbl3. Thus we
have a new data model implemented without
having to develop it from the beginning.
During software testing, we could easily test
the harmony between the database structure
and the application code by using the schema
migration process on test databases [1].

IV. CONCLUSION

Database Schema Migration is an essen-
tial process in agile software development. It
helps adapting database evolution and keeps
the database state compatible with the program
code. Schema Migration allows the database
schema to be updated to a new state or reverted
to an earlier state and its evolution can be
tracked. It is a time efficient process and its
utilization removes the need to fully redesign
data models up-front with every little alter-
ations in the database [1]. The primary purpose
of schema migration is to handle database
evolutions without impacting the existing data
in the database. For system like ours where
the database structure needs to be set and
compatible with the code expectations, the mi-
gration scripts allowed to tackle changes in the
database structure without any failure in run-
ning the application. However, there are certain
risks associated with migration. Preservation of
data in general is a concern when it comes to
migration and it is not guaranteed as schema
changes like column deletion can affect data
negatively. In cases of large databases, migra-
tion can lead to unexpected problems if there
is still data introduced by old software that was
not removed properly or if the relationships
between the entities are not well thought before
executing the migration steps which can lead to
integrity failures [1]. Thus it can be concluded
that schema migration is a very useful process
and this Tcl migration package helps achieve
schema migration soundly in a Tcl-Sqlite3 en-
vironment.

REFERENCES

[1] Schema Migration Wikipedia;. (Accessed on 09/24/2018).
http://www.webcitation.org/72gGFm7xa.

[2] Database Migration Blog;. (Accessed on 09/24/2018).
http://www.webcitation.org/72gGjYfEc.

