
Clay
A Minimalist Toolkit for Sculpting TclOO

Presented at

The 25th Annual Annual Tcl Developer’s Conference

(Tcl‘2018)

Houston, TX

October 15-19, 2018

Sean Deely Woods
Senior Developer

Test and Evaluation Solutions, LLC
400 Holiday Court

Suite 204
Warrenton, VA 20185

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract:
Clay is an attempt to take a career's worth of decent design ideas
and condense them into a single language tool. Clay provides a
vocabulary to describe the complex interactions possible in TclOO.
It also allows programmers to harness that complexity in a
deterministic fashion.

mailto:yoda@etoyoc.com
http://www.etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com

Introduction
I build and maintain several modules in

Tcllib. For my work in Tcllib I’ve often wished
for a robust framework to call on when
building libraries of TclOO code. I have
discussed frameworks at other conferences,
notably Tool and Tao/Tk. But they are an ill fit
to this task because they are principally
designed to make megawidgets. Their
concepts of event handling is of no help at
all to develop a sockets application. They
also introduced a such a number and variety
of methods into their metaclasses that they
are not a good fit for a general purpose
library.

 I had gotten around this problem with
Practcl by simply making a standalone meta
class. While developing the Httpd module, I
found myself re-creating many of those
same features. At first I adapted Tool to the
job. But later found myself stripping that out
and starting over with a fresh metaclass.

Rather than simply write another one-off
meta class, I figured it was about time to
write a framework for non-tk applications.

Both Practcl and Httpd makes heavy use
of mixins. In Practcl this allows build
products to take on behaviors via
configuration options. In Httpd mixins are
used in dispatching requests. Mixins also
allow developers to modify the server. All of
these interactions rely on begin able to
answer questions about classes, before
actually mixing them into an object. They
also had to provide shims for mixins to
contribute to dynamically generated
methods.

I sat down and worked out exactly what
was needed from a framework, and no more.
The result is a module that is about 1574
lines of code (with comments.)

Implementation
Clay introduces a method ensemble to

both oo::class and oo::object called clay. This
ensemble handles all of the interactions
within the framework. It also limits itself to
two variables inside of objects: clay and
claycache.

In a bulleted list Clay:

• Stores structured data

• Permits access from an object to the

structured data of it’s constituent classes.

• Manages method delegation

• Enforces policies governing mixin

interactions

• Enforces contracts between classes and

objects to initialize scaler variables, dicts,
and arrays

There is an optional language extension

which adds:

• Method Ensembles

• Syntactic sugar around declaring arrays,

dicts, and scalers.

The central concept is that inside of every

object and class (which are actually objects
too) is a dict called clay. What is stored in
that dict is left to the imagination. But
because this dict is accessed via a public
method, we can share structured data
between object, classes, and mixins.

Structured Data
Clay provides a mechanism for structured

data to be shared between an object and the
classes that make that object. If you are
familiar with my work with oo::meta and tool,
structured data in my style of frameworks is
nothing new. In previous efforts, I used a
central database to store that information
per-class.

There are challenges to that approach.
Each class had to flesh out it’s entire
dictionary to search it properly. Data was
constantly becoming stale as new packages
were loaded. Workarounds were developed,
and performance enhancing parlor tricks, but
the system was brittle.

Clay has no central database. Instead, it
uses a stylized set of method interactions
combined with introspection that TclOO
already provides. Together they allow object
to perform on-the-fly searches. On-the-fly
searches mean that the data is never stale,
and we avoid many of the sorts of collisions
that would arise when objects start mixing in
other classes during operation.

The clay methods for both classes and
objects have a get and a set method. For
objects, get will search through the local clay
dict. If the requested leaf is not found, or the
query is for a branch, the system will then

begin to poll the clay methods of every class
that implements the object, all of the classes
that have been mixed in, as well as all of the
ancestors of those classes.

Keeping Branches and
Leaves Straight

A few quick words on notation. In most
respects, clay is like any other dict. Each
value can, itself, be another dict.
Occasionally you will see that intended
branches on a tree end with a directory slash
(/). And occasionally you will see intended
leaves end with a colon (:). This is a guide for
the tool that builds the dicts to tag what
parts of a dict are intended to be branches
and which are intended to be leaves.

Inputting one value at a time with clay	set	
the system can determine what is a branch
or a leaf from the arguments, and branch
marking can be ignored:

::oo::class	create	::foo	{	}	
::foo	clay	set	property	color	blue	
::foo	clay	set	property	shape	round	

set	A	[::foo	new]	
$A	clay	get	property	

{color	blue	shape	round}	

$A	clay	set	property	shape	square	
$A	clay	get	property	

{color	blue	shape	square}	

But when you start storing blocks of text,
guessing what field is a dict and what isn’t
can get messy. Fortunately, when in doubt
the system assumes that the final value
given to clay	set	is intended to be a leaf:

::foo	clay	set	description	{A	generic	thing	of	
designated	color	and	shape}	

$A	clay	get	description		
{A	generic	thing	of	designated	color	and	shape}	

::oo::class	create	::bar	{	
		superclass	foo	
}	
::bar	clay	set	description	\	
		{A	drinking	establishment	of	designated	color	
and	shape	and	size}	
set	B	[::bar	new]	
$B	clay	get	description	

		{A	drinking	establishment	of	designated	color	
and	shape	and	size}	

Occasionally though, confusion can set in.
Without a convention for discerning
branches for leaves what should have been a
value can be accidentally parsed as a
dictionary, and merged with all of the other
values that were never intended to be merge.
Here is an example of it all going wrong:

::oo::class	create	::foo	{	}	
#	Add	description	as	a	branch	
::foo	clay	set	description/	\	
		{A	generic	thing	of	designated	color	and	shape}	
$A	clay	get	description		

{A	generic	thing	of	designated	color	and	shape}	
#	So	far	so	good	

::oo::class	create	::bar	{	
		superclass	foo	
}	
#	Add	a	description	as	a	branch	
::bar	clay	set	description/	\	
		{A	drinking	establishment	of	designated	color	
and	shape	and	size}	
set	B	[::bar	new]	
$B	clay	get	description	

{A	generic	thing	of	designated	color	and	shape	
establishment	of}	

If you are having trouble following,
because we interpreted description/ as a dict
instead of a string, our merge tool broke the
text into key/value pairs. It thought A, thing,
designated, and, and establishment were
the keys. If we didn’t happen to give our
blocks of text an even number of words, the
operation would have failed with an error.

You can also see that we had to really put
some work into screwing this up, but if you
can take the word of someone who has been
doing this for a few years, it happens.

You can also have the opposite occur,
what should have been a dict inside of a dict
(and thus merged) is interpreted as a leaf and
the values replaced. So you will see
throughout this paper, software libraries and
my own personal code liberal use of the /
and :.

dicttool

Clay utilizes dicttool to do its recursive
merging, and a side effect of dicttool is every
known branch being marked with an extra
key: . (a dot).

dicttool::dictmerge	result	\	
		{option/	{color/	{default:	green}}}	

.	1	option	{.	1	color	{.	1	default	green}}	

You can see the dicttool strips off the / and
: from the keys. Most of the clay public API
filters those dots out. But there are times
(especially when doing merges) that you
want to leave them in. For that clay provides
a parallel set of methods (dget and family).

If you are interacting with one of these
dictionaries in the wild, dicttool has a facility
for cleaning up a merge annotated dict
called sanitize.

Example: Option Handling
Most readers if this paper have either used

or tried to implement option handling. This is
not the strongest argument to use clay, but
it’s a common and intuitive enough set of
rules that I don’t need to devote a page to
explaining it. Plus option handling is trivial to
implement any number of ways. And
between tcllib and tklib we do implement it
any number of ways!

We are going to create a standard that
everything key the option/ branch is
considered the name of an option and every
value is a dict describing properties of that
option. We will assume each option needs
the following fields:

In the next column I lay out a quick and
dirty implementation of option handling using
just the clay method.

No information about specific options is
actually inscribed in the class itself. It just
knows to consult clay. With the info in clay,
and just using the public API, the methods of
the class can feed rules of its own creation.
Validate is just intended to be called and
throw an error if it is going to balk at an
option prior to the value going into an
internal data structure.

Because this object could have other
classes mixed in after creation, we don’t
hard code the defaults. We dig through Clay
to find them, and thus, if a mixin decides the
default shape is not square, and we have not
configured the object, a request for the
config item will return the mixin’s default.

Likewise, if a mixin creates a new option,
that new option enters the object’s
ecosystem on equal footing with the class’
options. That mixin can also replace the
Validate method with its own!

Naturally, this implementation is not the
most robust, so pardon the brevity:

::oo::class	create	::foo	{	
		constructor	args	{	
				my	config	set	{*}$args	
		}	
		method	Validate	{field	value}	{	
				if	{![my	clay	exists	option/	$field/]}	{		
						error	“Unknown	option	$field”		
				}	
				set	info	[my	clay	get	option/	$field]	
				if	{[dict	get	$info	type]	eq	“select”}	{	
							set	values	[dict	get	$info	values]	
							if	{	$value	ni	$values}	{	
										error	“$value	is	invalid.	Valid:	$values	
							}	
				}	
				if	{[dict	exists	$info	validate]}	{	
	 eval	[dict	get	$info	$validate]	
				}	
		}	
		method	config	{method	args}	{	
			my	variable	config	
			switch	$method	{	
				set	{	
					foreach	{f	v}	$args	{	
							set	f	[string	trim	$f	/-]	
	 my	Validate	$f	$v	
								set	config($f)	$v	
							}	
					}	
					get	{	
						set	fld	[string	trim	[lindex	$args	0]	/-]	
						if	{[info	exists	config($field)]}	{	
							return	$config($field)	
						}	
				if	{![my	clay	exists	option/	$fld/	default]}	{	
						error	“Unknown	option	$fld.”	
				}	
						return	[my	clay	get	option/	$field/	default]	
					}	
			}	
	}	
}	
::foo	clay	set	option/	color/	{	
		type	color	default	blue	
}	
::foo	clay	set	option/	shape/	{	
		type	select	default	round	values	{round	square}	
}	
::oo::class	create	::bar	{}	
::bar	clay	set	option/	price_of_beer/	{	
		default	{$4}	
}	
::bar	clay	set	option/	shape/	{	
		type	select		default	rectangle		
		values	{rectangle	round	square}		
}	
set	A	[::foo	new	color	green]	
$A	config	get	color	

green	
$A	config	get	shape	

round	
$A	config	get	flavor	

Unknown	option	flavor	
$A	mixin	::bar	
$A	config	get	price_of_beer	

$4	
$A	config	get	shape	

rectangle	

type A type keyword which is
meaningful to our presentation
layer.

default The default value for the option.

values For select fields, the values that
are possible.

validate A script to run to validate a new
value

The Clay Dialect
The clay module also includes an optional

language dialect to provide new keywords
which are shorthand for Clay interactions. To
use the dialect, you change from using
oo::class	and oo::define to using clay::define.
clay::define	understands all of the keywords
from standard TclOO. It also adds its own:

In the next column you will see our option
handling example re-implemented using
Clay’s notation. I think it looks better, but as
you saw on the previous page, you can get
the same behavior with just the clay method
and otherwise pure TclOO. 

proc	::clay::define::Option	{name	info}	{	
		set	class	[class_current]	
		dict	for	{f	v}	$info	{		
				$class	clay	set	option	$f	$v	
		}	
}	
::clay::define	::foo	{	
		Option	color	{type	color	default	blue}	
		Option	shape	{	
				type	select	default	round		
				values	{round	square}	
		}	
		Dict	config	{}	

		constructor	args	{	
				my	config	set	{*}$args	
		}	
		method	Validate	{field	value}	{	
				if	{![my	clay	exists	option/	$field/]}	{		
						error	“Unknown	option	$field”		
				}	
				set	info	[my	clay	get	option/	$field]	
				if	{[dict	get	$info	type]	eq	“select”}	{	
							set	values	[dict	get	$info	values]	
							if	{	$value	ni	$values}	{	
										error	“$value	is	invalid.	Valid:	$values	
							}	
				}	
				if	{[dict	exists	$info	validate]}	{	
	 eval	[dict	get	$info	$validate]	
				}	
		}	
		Ensemble	config::set	{args}	{	
			dict	for	{f	v}	$args	{	
						set	f	[string	trim	$f	/-:]	
						my	Validate	$f	$v	
						dict	set	config	$f	$v	
				}	
		}	
		Ensemble	config::get	{field}	{	
				my	variable	config	
				set	field	[string	trim	$field	/-:]	
				if	{[dict	exists	$config	$field]}	{	
						return	[dict	get	$config	$field	
				}	
		if	{![my	clay	exists	option	$field	default]}	{	
						error	“Unknown	option	$field.”	
		}	
				return	[my	clay	get	option	$field	default]	
		}	
}	
::clay::define	::bar	{	
		Option	price_of_beer	{default	{$4}}	
		Option	shape	{	
				type	select	default	rectangle		
				values	{rectangle	round	square}	
		}	
}	

set	A	[::foo	new	color	green]	
$A	config	get	color	

green	
$A	config	get	shape	

round	
$A	config	get	flavor	

Unknown	option	flavor	
$A	mixin	::bar	
$A	config	get	price_of_beer	

$4	
$A	config	get	shape	

rectangle	

Array Declare an internal variable
which is initialized as an
associative array and
populated with values on
construction. Note the case.

class_method Define a method of the class
object itself that will be
inherited by descendent
classes, but not object
instances of that class. Note
that a class can have a
class_method implementation
that has the same name as a
method implementation and
they will not conflict.

clay Interact with the class’ clay
storage

Dict Declare a dict that should be
populated with values on
construction. (Note the case)

Ensemble Declare the arguments and
body for a sub-method of a
method ensemble.

Variable Declare a variable that should
be populated with a default
value on construction. (Note
the case.)

Creating Your Own Dialects
Clay is built using the oo::dialect module

from Tcllib. oo::dialect allows you to either
add keywords directly to clay, or to create
your own metaclass and keyword set using
Clay as a foundation.

In the prior example I used it to actually
invent a new keyword for clay called Option.

The oo::dialect system creates a
namespace, and any commands in that
namespace can be invoked within the body
of a metaclass::define command. A command
called class_current keeps track of the class
that was being modified.

The oo::dialect system also creates two
classes metaclass::class and metaclass:object.
Every class created with metaclass::define will
automatically be an descendent of
metaclass::object.

metaclass::class is helpful if you want to add
methods to your meta class’ classes. For
instance, to hijack the unknown mechanism
in TclOO to emulate Tk widgets.

The metaclass::define also has one feature
that oo::define lacks. It will happily deduce
that the class you are referencing does not
exist yet, and create it. For large libraries I
find this helps because you may have large
classes that are built up over several source
files.

Dicts Vs. Flat Lists

There is an argument to be made that dicts
of dicts of dicts are overkill. Many of the
functions that Clay is trying to perform would
be better done by hard coded values
returned by methods, or streams of values in
lists. And honestly, there is nothing in Clay
that prevents you from doing so in your
particular application.

Not to harp on option handling, but if you
pick apart the megawidget class in Tk, there
is a method GetSpecs which returns a list of
lists, and each of those lists is expected to
be 4 elements, and you have to squint to
figure out which element is doing which.

What would you rather encounter buried
deep within the /library file system when
debugging? 

This:

	method	GetSpecs	{}	{	
			set	result	[next]	
			lappend	result	{-cursor	cursor	Cursor	{}}	
			lappend	result	{-takefocus	takeFocus	\	
					TakeFocus	::ttk::takefocus}	
				return	$result	
	}	

Or this:

		Option	cursor	{	
					name	cursor	
					class	Cursor	
					command	{}	
		}	
		Option	takefocus	{	
					name	takeFocus	
					class	TakeFocus	
					command	::ttk::takefocus	
		}	

And if you ever want to just emulate the old
GetSpecs method:

		method	GetSpecs	{}	{	
				set	optinfo	[my	clay	get	options/]		
				set	result	{}	
				dict	for	{name	info}	$optinfo	{	
						lappend	result	[list	-${name}	\	
	 		[dict	get	$info	name]	\	
								[dict	get	$info	class]	\	
								[dict	get	$info	command]	\	
								[dict	get	$info	validate]]	
				}	
				return	$result	
		}	

Method Delegation
It is sometimes useful to have an external

object that can be invoked as if it were a
method of the object. Clay provides a
delegate ensemble method to perform that
delegation, as well as introspect which
methods are delegated in that manner. All
delegated methods are marked with html-
like tag markings (< >) around them. Behind
the scenes we are simply using the
oo::objdefine forward mechanism:

foreach	{stub	object}	$args	{	
		set	stub	<[string	trim	$stub	<>]>	
		dict	set	clay	delegate/	$stub	$object	
		oo::objdefine	[self]	forward	${stub}	$object	
		oo::objdefine	[self]	export	${stub}	
}	

In this example, we will be using delegation
to provide an abstraction to a raw database
object created by sqlite: 

::clay::define	example	{	
		variable	buffer	
		constructor	{filename}	{	
				#	Build	a	database	connection	
				set	obj	[namespace	current]::db	
				sqlite3	$obj	$filename	
			#	Delegate	the	counter		
				my	delegate	<db>	$obj	
		}	
		method	users	{}	{	
				set	result	{}	
				my	<db>	eval	{select	distinct	username	from	
users}	{	
						lappend	result	$username	
				}	
				return	$result	
		}	
		method	userid	{username}	{	
				set	stmt	{select	userid	from	users	where	
username=:username	or	userid=:username}	
				if	{![my	<db>	exists	$stmt]}	{		
						return	-1	
				}	
				return	[my	<db>	onecolumn	$stmt]	
		}	
}	

set	A	[example	new	~/data/example1.sqlite]	
set	B	[example	new	~/data/example2.sqlite]	
foreach	user	{$A	users}	{	
		set	usermap($user)	[$B	userid	$user]	
}	

1	

Pay special attention to the <db>	eval. The
eval operator of sqlite is a very complex
animal that interacts with local variables.
Emulating that without using oo::objdefine
forward is very difficult. Another feature is the
fact that we build an sqlite object instance
inside the object’s namespace. When the
object is destroyed, the sqlite instance will
be cleaned up automatically for us.

Mixin Interaction Policies
Clay introduces several policies that sort

out complex interactions between mixins. It
also provides shims for scripts to fire off in
response to mixin events.

Developers are free to use or ignore this
feature. To use the mixin system, simply use
the clay	mixin ensemble method instead of
the standard oo::objdefine	mixin mechanism.

When that method is invoke, all classes
currently mixed in, about to be mixed in, or
about to be removed are polled for the
following values in their Clay system: 

::clay::define	animal	{	
		clay	set	mixin/	map-script	{	
puts	“[self]	says	[my	clay	get	sound]”	
}	
		clay	set	mixin/	unmap-script	{	
puts	“[self]	no	longer	says	[my	clay	get	sound]”	
}	
}	
::clay::define	cat	{	
		superclass	animal	
		clay	set	sound	meow	
}	
::clay::define	dog	{	
		superclass	animal	
		clay	set	sound	woof	
}	
::clay::object	create	felix	
felix	clay	mixin	cat	

::felix	says	meow	
felix	clay	mixin	dog	

::felix	no	longer	says	meow	
::felix	says	woof	

Beyond Options for
Object Configuration

During the development of Toadhttpd
(which extends the Tcllib httpd module into a
full general purpose webserver) I had an
interesting problem with configuration.
Toadhttpd makes use of plugins to extend
the core httpd server. But not every plugin is
used in every server, and plugins often need
settings above and beyond what the core
server is aware of.

In a world where we use the likes of Tk
options to configure an object, we are more
or less stuck thinking about the world as a
key/value list. If a plugin needed a new
option, we could just invent a new option
that doesn’t conflict with an existing option.
(Say dbfile). If we have two plugins that each
want an option named dbfile, we could make

mixin/ unmap-script Invoked if a class is
about to be removed
as a mixin from an
object

mixin/ map-script Invoked of a class has
just been mixed into an
object

mixin/ react-script Invoked if another
class has been mixed
into this object while
this class remains
mixed in.

plugins prepend the name of the plugin to
the option. (Say dispatch_dbfile).

#	configure	script	for	example.com	
my	configure	\	
	-port	80	\	
	-logdir	/var/log/www	\	
	-dispatch_class	httpd::plugin.dispatch_sqlite	
	-dispatch_cache	/var/cache/www	\	
	-dispatch_dbfile	/var/cache/www/cache.sqlite	\	
	-security_class	httpd::plugin.blackhole	\	
	-security_block_null_agent	1	\	
	-security_dbfile	/var/cache/www/blackhole.sqlite	

For a finite number of plugins, where the
developer knows ahead of time which
plugins are going to need what data, it’s not
too bad. But if anyone has tried to configure
an internet service in the last 20 years or so,
Katy bar the door.

With clay, you can play the game in a
different way. Each plugin can have it’s own
branch in the clay data structure to play in:

#	configure	script	for	example.com	
my	clay	set	{	
	server/	{	
			port	80	
			logdir	/var/log/www	
	}	
	plugin/	{	
			dispatch	{	
					class		httpd::plugin.dispatch_sqlite	
					cache		/var/cache/www	
					dbfile	/var/cache/www/cache.sqlite	
			}	
			security	{	
					class	httpd::plugin.blackhole	
					block_null_agent	1	
					dbfile	/var/cache/www/blackhole.sqlite	
			}	
	}	
}	

Rather than a random jumble of fields and
values, you get a sense of not only what the
setting is, but where it will be used. This
example is a bit too simple, but if you read
my paper on The Httpd Module and
Toadhttpd you will see the power of passing
structured data during object evolution put
into action.

Structured Data Inheritance

In a complex system where a rule has to
be written to handle a range of different
classes of objects, it is often useful to be
able to refer to some meta-information within
the object. It is also helpful to have that
meta-information inherited along with the
methods.

Class Inheritence.

The simplest kind of inheritance is the type

that we naturally think should happen in a
class structure, where each class has a
number of ancestors.

In this example we are creating the
taxonomic classification of the common
housecat. In that classification, we are
seeding some useful traits that will be
passed along to descendants of the class
above.

::clay::define	animal	{	
		clay	set	tkingdom	Animalia	
		clay	set	has_spine	0	
}	
::clay::define	vertebrate	{	
		superclass	animal	
		clay	set	torder	Chordata	
		clay	set	has_spine	1	
}	
::clay::define	mammal	{	
		superclass	vertebrate	
		clay	set	tclass	Mammalia	
		clay	set	has_fur	1	
}	
::clay::define	carnivore	{	
		superclass	mammal	
		clay	set	torder	Canivora	
}	
::clay::define	feline	{	
		superclass	carnivore		
		clay	set	tfamily	Felidae	
}	
::clay::define	felis	{	
		superclass	feline		
		clay	set	tgenus	Felis	
}	

The idea being that by the time we get
down to putting together the final leaf
classes, the code is simply:

::clay::define	housecat	{	
		superclass	felis		
		clay	set	tspecies	domesticus	
}	

And should a question arise, all objects of
that class can answer based in information
inherited by ancestral classes.

housecat	create	Thomas	
Thomas	clay	get	torder	

Chordata	
Thomas	clay	get	has_fur	

1	
Thomas	clay	get	has_backbone	

1	

Mixin Inheritence

With Mixins we have a different dimension

to consider. Objects can have more than one
class at a time. In the prior example, with
living things, we don’t need to worry about

http://example.com
http://example.com

intrinsic properties of the object changing
during the creature’s lifetime. Or at the very
least, we tend to focus on attributes that
really shouldn’t change. If I wanted to take
species and divide down further to breeds of
cat, it’s just one more layer of descendent
below species.

	::clay::define	siamese	{	
		superclass	housecat	
		clay	set	coat_length	short	
		clay	set	ear_shape			pointy	
}	

But outside of the realm of living things, we
tend to have objects that are a collection of
parts. Those parts can change. And those
parts can radically alter the behavior of
system as a whole.

Before I go off on a tangent about
swapping mixins and whatnot at create time,
Clay treats mixins as just another class that
the object inherits from. Mixins are included
in clay	ancestors according to the following
rule:

set	clayorder	[::clay::ancestors	\	
		[info	object	class	[self]]	\	
				{*}[info	object	mixins	[self]]]	

Where clay::ancestors is defined as:

proc	::clay::ancestors	args	{	
		set	result	{}	
		set	queue	{}	
		foreach	class	[lreverse	$args]	{	
				lappend	queue	$class	
		}	

		#	Rig	things	such	that	that	the	top	superclasses	
		#	are	evaluated	first	
		while	{[llength	$queue]}	{	
				set	tqueue	$queue	
				set	queue	{}	
				foreach	qclass	$tqueue	{	
						foreach	aclass	\	
											[::info	class	superclasses	$qclass]	{	
								if	{	$aclass	in	$result	}	continue	
								if	{	$aclass	in	$queue	}	continue	
								lappend	queue	$aclass	
						}	
				}	
				foreach	item	$tqueue	{	
						if	{	$item	ni	$result	}	{	
								lappend	result	$item	
						}	
				}	
		}	
		return	$result	
}	

Essentially, the most recent mixin (the one
as the last argument) gets first crack, and
then its ancestors. We then move on to the
next most recent mixin, and repeat. And
when we run out of mixins, we then evaluate
the class of the object itself, and then look
through its ancestors.

The long and short of the algorithm is that
properties will take hold at the same spot a
method would in TclOO’s inheritance
mechanism.

Mixins as Configuration
Options

One of my side projects is developing a
text based role playing engine. If you are
familiar with Dungeons & Dragons (or
whatever the kids are calling it these days…)
each Player and Non-Player Character (NPC)
have several “slots” that affect how they
interact with the world:

For now we’ll ignore the further matrixes
we would need to develop for weapons,
armor, magical items, magical effect, and
whatever the Game’s master has decided to
inflict the play with because she is annoyed
with them.

The way that I’ve found to solve this
problem is by artificially imposing “slots” on
mixins. Mixins that are mutually exclusive are
considered options on one of those slots.
For really exotic scenarios where we
hybridize more than one option, we can

Race Species of the player. There are
special rules for each race when
building the character as well as
special abilities conferred by race.

Options: human, elf, dwarf, halfling

Class What is vocation of the adventurer.
These affect weapons and spells
they are allowed to use, as well as
how the character conducts
himself in combat.

Options: warrior, wizard, cleric,
theif, bard

Alignment

(Law)

The default manner in which the
player’s character is expected to
interact with the world. Choices
are

Options: Lawful, Neutral, Chaotic

Alignment
(Moral)

The default manner in which the
player’s character is expected to
interact with the world. Choices
are

Options: Good, Neutral, Evil

actually mix them in together on the same
slot.

The order in which mixins take hold is
determined by the order in which the slots
were added to a dictionary. It’s not a perfect
system, but it’s a system.

Our class structure for the object itself
becomes deceptively simple: there is only
once class of object. That class has only the
basic methods to load mixins and perform
low level interactions with the framework.

To create an object, I just spawn off the
undifferentiated object, and then mix the
heck out of it:

::stage::object	new	{	
		uuid			7d7c0261-5a7a-4fd9-946e-c23d59d70b70	
		name			{The	Player}	
		mixin		{	
				core	::stage::avatar	
				race	::stage::race.human	
				class	::stage::class.cleric	
				delegate	{	
						db	::db	
						stage	::GAME	
				}	
				alignment	{	
					::stage::alignment.lawful		
					::stage::alignment.good	
				}	
		}	
}	

Internally, that object’s constructor just
looks for certain keywords to tell it important
behavioral bits, and just writes everything
else to the clay data structure:

clay::define	::stage::object	{	
		constructor	{claydat}		{	
			if	{![dict	exists	$claydat	uuid]}	{	
						dict	set	claydat	uuid	\	
								[::uuid::uuid	generate]	
				}	
				dict	for	{f	v}	$claydat	{	
						if	{$f	in	{delegate	mixin}}	continue	
						my	clay	set	$f	$v	
				}	
				my	clay	delegate	\	
						{*}[dict	getnull	$claydat	delegate]	
				my	clay	mixinmap	\	
						{*}[dict	getnull	$clayday	mixin]	
				my	generate	{msg_subject	object_created}	
		}	
}	

If you think this example is a little
contrived, here is an class method to
determine which mixin to slot in based on
the local environment from Practcl: 

oo::objdefine	::practcl::toolset	{	
		method	select	object	{	
			#	Select	the	toolset	to	use	for	this	project	
			if	{[$object	define	exists	toolset]}	{	
						return	[$object	define	get	toolset]	
				}	
				set	class	[$object	define	get	toolset]	
				if	{$class	ne	{}}	{	
						#	The	object	configuration	state	a		
						#	class	to	use	
						$object	mixin	toolset	$class	
				}	else	{	
						#	Ok…	we	don’t	have	anything	pencilled	
						#	in	guess	base	on	he	environment	
						if	{	
[info	exists	::env(VisualStudioVersion)]	
						}	{	
								$object	clay	mixinmap	\	
										toolset	::practcl::toolset.msvc	
						}	else	{	
								$object	clay	mixinmao	\	
	 		toolset	::practcl::toolset.gcc	
						}	
				}	
		}	
}	

For Httpd we use mixins to inject behaviors
into httpd::reply instances:

method	dispatch	{newsock	datastate}	{	
				my	variable	chan	request	
				try	{	
						set	chan	$newsock	
						chan	event	$chan	readable	{}	
						chan	configure	$chan	\	
								-translation	{auto	crlf}	-buffering	line	
						my	clay	mixinmap	\	
								{*}[dict	getnull	$datastate	mixin]	
						my	clay	delegate	\	
								{*}[dict	get	$datastate	delegate]	
						my	reset	
						set	request	[my	clay	get	dict/	request]	
						foreach	{f	v}	$datastate	{	
								if	{$f	in	{mixin	delegate}}	continue	
								if	{[string	index	$f	end]	eq	"/"}	{	
										my	clay	merge	$f	$v	
								}	else	{	
										my	clay	set	$f	$v	
								}	
								if	{$f	eq	"http"}	{	
										foreach	{ff	vf}	$v	{	
												dict	set	request	$ff	$vf	
										}	
								}	
						}	
						my	Session_Load	
						my	Log_Dispatched	
						my	Dispatch	
				}	on	error	{err	errdat}	{	
						my	error	500	$err	\	
							[dict	get	$errdat	-errorinfo]	
						my	DoOutput	
				}	
		}	

And note that in the case of Practcl and
Httpd, those methods are not called by the
constructor. The power of TclOO is that
mixins can happen at any time in the
lifecycle of an object.

One of the nifty things that flexibility allows
is to make objects serve as both HTTP and
SCGI content sources.

At the tail end of the httpd::server.scgi
class’ Connect method is the following
snippet:

set	pageobj	[::httpd::reply	create	\	
			::httpd::object::$uuid	[self]]	
dict	set	reply	mixin	\	
				protocol	::httpd::protocol.scgi	
$pageobj	dispatch	$sock	$reply	

Essentially with one mixin we can alter the
the headers returned by ::httpd::reply such
that it’s compatible with an SCGI proxy.

There are a few things to pay attention to
in the three examples I’ve cited. The
stage::object constructor knows it is always
getting the first crack at the clay data
structure. However, in the httpd::reply
dispatch method, we are already part of an
established object. You will see that the

mechanism for merging clay data is a tad
more sophisticated so that leaves are
replaced and branches are merged. We also
have special handling for one branch (http)
which is copied over to the object’s request
dictionary.

The point I am trying to make is that all of
these projects use clay while still being true
to the domain specific rules of the problem
they are trying to tackle.

Conclusion
I goal in this paper was to introduce Clay,

as well as the problems it tries to solve. By
leveraging conventions already familiar to
Tclers, I hope you find it easy to pick up and
comfortable to code with. And even if you
don’t, it can be doing plenty of cool things
behind the scenes without causing you a lot
of fuss an bother. 

For More Information
Clay is distributed as part of Tcllib:

https://core.tcl-lang.org/tcllib

The manual page can be directly access from the web:

https://core.tcl-lang.org/tcllib/doc//trunk/embedded/www/tcllib/files/modules/clay/clay.html

There is also a development version that is being adapted into text adventure game engine
and natural language parsing system:

http://fossil.etoyoc.com/fossil/clay

http://chiselapp.com/user/hypnotoad/repository/clay

Cited Works
Cover and clip art:
Celtic Stencil Designs CD-ROM and Book
Co Spinhoven
http://store.doverpublications.com/0486996786.html

The Httpd Module and Tclhttpd
Sean Woods
http://www.etoyoc.com/yoda/papers/tcl2018.Httpd_Paper.pdf

https://core.tcl-lang.org/tcllib
https://core.tcl-lang.org/tcllib/doc//trunk/embedded/www/tcllib/files/modules/clay/clay.html
http://fossil.etoyoc.com/fossil/clay
http://chiselapp.com/user/hypnotoad/repository/clay
http://store.doverpublications.com/0486996786.html
http://www.etoyoc.com/yoda/papers/tcl2018.Httpd_Paper.pdf

