
Entice – Embedding Firefox in Tk 
Steve Landers 

Digital Smarties 
steve@DigitalSmarties.com 

Abstract 
 

This paper describes Entice - a Tcl/Tk extension that allows multiple Firefox 
windows to be embedded into Tk and controlled from a Tcl/Tk application. 
Entice brings to Tcl/Tk applications on X11 similar functionality to that 
provided by using Internet Explorer and Optcl on Windows. The paper 
describes the use of the TkXext extention to embed Firefox, the use of web 
technologies (XUL, Javascript and AJAX) and a small embedded web 
server for communication with Firefox. Future developments such as 
providing a generalised cross-platform/cross-browser API will be discussed. 

 

Background 
 
On Windows it is possible to embed instances of Internet Explorer (IE) into a Tk 
application using COM – via the Optcl[1] or Tcom[2] extensions. This makes practical a 
new genre of hybrid client/web applications such as NewzPoint[3] (which displays 
multiple web pages in a two-tiered tab layout arrangement using IE as the display 
engine). 
 
Entice is an attempt to provide the same (or similar) functionality for Unix/Linux platforms 
- in the first instance, Tk under X11 but potentially under other windowing systems such 
as MacOS X Aqua (although that is beyond the scope of this paper). 
 
There are three distinct requirements in doing this: 

• embedding a browser in Tk  
• communicating with the browser (i.e. sending content) 
• controlling the browser from Tcl 

 

A browser in a Tk application? 
 
There are a number of approaches to providing a browser within a Tk application: 

• use a Tk extension that “wraps” a browser library 
• use a Tk browser extension 
• embed an external browser window into a Tk frame 

 
The first approach was used in the TkGecko[4] project, which wraps the Mozilla Gecko 
rendering engine as a Tk extension. This approach provides a full featured browser that 
is relatively easy to control from Tcl. but comes at the cost of complexity and size. 
Building Gecko (and indeed most full-featured browsers) is notoriously difficult, and 
getting the Mozilla event system to work seamlessly with the Tcl event system is tricky. 



But more significantly, the resulting Tk extension is large – a problem when the 
application has to carry around its own copy of a shared library (so as to be self-
contained) and counter-productive to the Starkit[5] approach of small / lean applications. 
 
The second approach of using a Tk-based browser addresses the size and complexity 
issues. But at its current stage of development, even the most advanced one - Tkhtml[6] 
- whilst very impressive doesn’t yet offer the level of compatibility needed in many web 
applications. 
 
The third approach is to use a pre-existing browser installation and embed its window(s) 
into a Tk container frame. The trade-off is that it is more complex to control the browser 
(some operations can only initiated "from the inside") and an application can’t be totally 
self-contained (i.e. as a Starpack). Having said this, these downsides are far less 
significant that the upside of smalll size and removing the need to build and deploy the 
browser. 
 
Accordingly, this was the approach chosen for Entice – and the browser of choice was 
Firefox, which is fast becoming the dominant Mozilla-based browser on Linux and Unix. 
 

Embedding Firefox 
 
The Tk frame(n) command supports a “–container” flag that tells Tk the frame will be 
used as a container in which some other application (in this case Firefox) will be 
embedded. 
 
George Peter Staplin’s TkXext[7] was used to perform the embedding. TkXext is a 
Tcl/Tk extension designed to facilitate automation of software testing, but is also useful 
for application embedding.  It allows the X11 window ID for an application to be located  
by searching for its window title. This window ID can then be used to re-parent the 
application window into the Tk container frame. 
 
For example, the following code creates a Firefox instance, creates a Tk frame to hold it, 
looks for the Firefox instance using TkXext.find.window and then re-parents it into the Tk 
frame. 
 

# create blank Firefox instance 
exec [auto_execok firefox]about:blank & 
 
# create Tk frame to hold Firefox 
set f [frame .f -width 200 -height 200 -container 1] 
pack $f -fill both -expand 1 
 
# find and re-parent the Firefox window into the Tk frame 
if {[set id [TkXext.find.window "Mozilla Firefox"]] != 0} { 
    TkXext.reparent.window $id [winfo id .f] 
} 

 
There is a small problem with this scheme - it assumes the default title of a blank Firefox 
window is “Mozilla Firefox”, and that the user doesn't create another blank Firefox 
window between when the Firefox instance is created and when it is searched for. Whilst 



this is unlikely, it is still quite possible – so Entice needs set the Firefox window title to a 
unique value, and to do that it needs to communicate with Firefox. 
 

Communicating with Firefox 
 
When Entice is initialised it creates an embedded web server on a  listening (i.e. -server) 
socket. This web server will only accept connections from the local host, and implements 
a small set of requests used by Firefox to communicate with Entice. 

 
if [catch {set listen [socket -server accept 0]}] { 
   error "couldn't open listening socket" 
}  
… 
# accept a connection on the listening port      
proc accept {sock host path} { 
   if {$host ne "127.0.0.1"} { 
      # this should never happen under normal circumstances 
      catch {close $sock} 
      error "received connection from wrong host" 
   } else { 
      fconfigure $sock -blocking 0 
      fileevent $sock readable [list request $sock] 
   } 
}   

 
Firefox is started with its “--chrome” argument pointing back to the web server.  A 
chrome[8] defines the user interface outside the browser’s content area,  and is specified 
in XUL[9] (pronounced zool) – the XML User Interface Language. It is usually read from 
the host filesystem, but it can be read from a URL 
 

set port [lindex [fconfigure $listen -sockname] 2]  
exec [auto_execok firefox] -chrome http://localhost:$port/init &  

 
This will cause the embedded web server to receive a /init request 
 
    # accept a request from Firefox and act upon HTTP GET requests 
    proc request {s} { 
        variable sock 
        set sock $s 
        set line [gets $sock] 
    if {[fblocked $sock]} return 
        fileevent $sock readable "" 
        fconfigure $sock -buffering full 
        lassign [split [string trim $line]] op arg rest 
        if {$op eq "GET"} { 
            switch -glob $arg { 
                "/init" { 
                    initbrowser 
                } 
   … 
        } 
        catch {flush $sock ; close $sock} 
    } 



The Entice “initbrowser” proc reads the entice.xul file (comprising approximately 90 lines 
of Javascript) which is stored externally to entice.tcl to facilitate maintenance. The XUL 
file does need the appropriate Entice web server URL substituted but is otherwise 
passed to Firefox untouched. 
 
    proc initbrowser {} { 
        variable port 
        variable sock 
        set fd [open entice.xul] 
        set xul [read $fd] 
        close $fd 
        regsub -all {%URL%} $xul http://localhost:$port/ xul 
        set code [header  
   "Content-type: application/vnd.mozilla.xul+xml" \ 
              "Content-length: nnn"] 
        append code $xul 
        puts $sock $code 
    }  
 
    proc header {args} { 
       return "HTTP/1.1 200 OK\n[join $args \n]\n\n" 
    } 
 
At this point Firefox is running, and it has been supplied with some Entice specific 
startup code.   But what does that code contain, and how can Entice control Firefox 
when the usual mode of operation is for the browser to pull content from the web server? 
 

Controlling Firefox 
 
The key to Entice controlling Firefox is the XMLHttpRequest Javascript object running in 
the browser.  
 
XMLHttpRequest[10] was originally implemented by Microsoft for IE 5 on Windows, and 
has since been implemented in Mozilla and Apple’s Safari. It is the command at the 
heart of AJAX[11] (Asynchronous Javascript And XML) that is being promoted as “next 
big thing” in web technology.  XMLHttpRequest allows the browser to wait 
asynchronously for a request from the server, whilst remaining responsive to the user – 
and has made applications like Google Earth possible (arguably taking web applications 
from “sucky” to “adequate” when compared with their more traditional cousins). 
 
When the Entice chrome is loaded by Firefox it creates an XMLHttpRequest object that 
waits for commands from Entice, as shown in this extract from entice.xul 
  
        function request(cmd) { 
            var url = "%URL%" + cmd; 
            req = new XMLHttpRequest(); 
            req.onreadystatechange = command; 
            req.open("GET", url, true); 
            req.send(null); 
        } 
    // start the Ajax connection          
        request("cmd"); 



This will cause the “cmd” request to be sent to Entice and the Javascript “command” 
function to be called when a response is received by Firefox. Let’s look at each of these 
in turn. 
 
The “cmd” request is quite simple – it just tells Entice that Firefox has started and 
requests a command. We have already seen the “request” proc, here it is repeated with 
the “/cmd” section added 
 
    proc request {s} { 
        … 
        if {$op eq "GET"} { 
            switch -glob $arg { 
                "/init" { 
                    initbrowser 
                } 
                “/cmd” { 
                    variable started 1 
                    return 
                } 
    } 
        } 
        catch {flush $sock ; close $sock} 
    } 

 
Note that all “/cmd” returns without closing the socket – the socket is the means that 
commands are sent from Entice to Firefox to control it. 
 
But what has Entice been doing whilst waiting for Firefox to initialise? Back when Firefox 
was started Entice immediately waited for it to send the /cmd request - as indicated by 
the “started” namespace variable.  
 
 vwait [namespace which -variable started] 
 
Now that Firefox has started,  when an Entice API command is invoked by the Tcl/Tk 
application, it is encoded as XML and written to the socket by the “response” proc 
 

proc response {cmd id {arg -}} { 
    variable sock 
    while {$sock eq ""} { 
       # multiple commands issued - wait for next XMLHttpRequest 
       vwait [namespace which -variable sock] 
    } 
    set resp [header "Content-Type: text/xml"] 
    append resp "<command><cmd>$cmd</cmd>" 
    append resp "<id>$id</id><url>$arg</url>" 
    append resp "</command>" 
    puts $sock $resp 
    catch {flush $sock ; close $sock} 
    set sock “” 
} 
 

As can be seen, the XML protocol is quite simple – the command is passed, along with 
two arguments : the applicable window ID and optionally a URL.  Hand coded XML (so 
to speak) is fine – this protocol doesn’t demand tdom or equivalent. 



In the browser the XMLHttpRequest Javascript object will receive and decode the 
response, and call the “command” Javascript function supplied as part of the Entice 
XUL. The command function is just a big switch that implements the browser side of the 
protocol that travels between Entice and Firefox. 
 
    function command() { 
        if (req.readyState == 4) { 
            if (req.status == 200) { 
                var cmd = req.responseXML.getElementsByTagName("cmd") 
                                            .item(0).firstChild.data; 
                var id = req.responseXML.getElementsByTagName("id") 
                                            .item(0).firstChild.data; 
                var url = req.responseXML.getElementsByTagName("url") 
                                            .item(0).firstChild.data; 
                var win = windows[id]; 
                switch (cmd) { 
                   … 
                } 
            } 
        } 
 
Note that an XMLHttpRequest,readyState of “4” signifies the successful completion pf 
the HTTP interaction, and an XMLHttpRequest.status of 200 indicates a request 
completion code of “OK”. 
 
So what are the commands implemented in the command function? For that we need to 
look at the Entice API. 
 

The Entice API 
 
To include Entice in an application, naturally enough you just “package require entice”. 
To initialise Entice use the entice::init command (all Entice commands live in the “entice” 
namespace). 
 

package require entice 
entice::init 

  
The entice::init command starts Firefox as described previously, and waits for Firefox to 
load its chrome and create an XMLHttpRequest object. 
 
To create a new Firefox window and corresponding Entice object, use the entice::new 
command. Here’s an example that creates a paned window with two panes containing 
Firefox 
 

set p [panedwindow .p -orient vertical] 
set f1 [frame .p.f1 -container 1] 
set f2 [frame .p.f2 –container 1] 
.p add $f1 -height 300 -width 600 -sticky nswe 
.p add $f2 -height 300 -width 600 -sticky nswe 
set w1 [entice::new http://www.tcl.tk .p.f1] 
entice::new http://wiki.tcl.tk .p.f2 w2 



The entice::new command returns an object handle that is used to control the 
corresponding Firefox window. The new command also supports an optional third 
argument that specifies the name of the Entice object.  In the above example the object 
name for the first Entice object is stored in the w1 variable, whereas the object name is 
set to w2 in the second. 
 
Entice can be told to wait until the Firefox window has been embedded using the wait 
method. This is typically used to delay packing/gridding the container frames until Firefox 
has been re-parented into it 
 

$w1 wait 
w2 wait 
pack .p –fill both –expand 1 

 
Again, note the different between $w1 and w2  - the first is a variable holding the object 
name generated by entice::new, and the second is the object name we specified. 
 
Other Entice methods are used to manipulate the corresponding Firefox window 

• location – change the website being viewed 
• back – go back to the previous location (equivalent to the back button) 
• forward – go forward to the next location in the browser history (equivalent to the 

browser forward button) 
• reload – reload the current location 
• replace – replace the current location in the history with a new location 

 
For example: 
 

# change top pane to ActiveState’s website 
$w1 location http://www.activestate.com 
 
# now back to www.tcl.tk 
$w1 back 
 
# forward to www.activestate.com again 
$w1 forward 
 
# reload www.activestate.com 
$w1 reload 
 
# replace with ww.eolas.com 
$w1 replace http://www.eolas.com 
 
# back to www.tcl.tk 
$w1 back 

 
There are also methods for controlling the embedding of Firefox 

• unparent – unparents the Firefox window – i.e. moves it back into the root 
window of the hosts window manager 

• reparent – re-embeds the Firefox window in  a (possibly different) frame - the 
inverse of unparent 

• close - close the Firefox window (the container frame is untouched) 
• frame – returns the name of the container frame 

 



For example: 
 
# unparent Firefox from existing frame and re-parent in 
# another frame 
$w1 unparent 
pack forget .p 
pack [frame .f –container 1] –fill both –expand 1 
$w1 reparent .f 
 
# retrieve the container frame name 
set container [w2 frame] 
 
# close the Firefox window 
w2 close 

 

 

Another look inside  
 
Now that we’ve seen the API we can take another look inside Entice, and in particular at 
the flow of control when creating and embedding a Firefox window. 
 
When the entice::new command is called, it creates a unique ID to use in the Firefox 
window manager title, so that it can correctly detect and re-parent the Firefox window 
using TkXext. This ID needs to be difficult to guess, but need not be cryptographically 
secure – so we just use Tcl’s “clock clicks” and the “expr rand” command.  The 
entice::new command then sends a “new” response to Firefox via the XMLHttpRequest 
mechanism, and creates an alias to the Entice object command via the Tcl “interp alias” 
facility. 

In the browser the Javascript “command” function is triggered and passed the “new” 
command, which invokes the Javascript “create” function passing it the window ID and 
the URL 
 
    function create(id, url) { 
        var win = window.open("", "",               
          "width=1,height=1,resizable,scrollbars,dependent,status=no"); 
        win.document.title = "Entice - " + id; 
        win.setContextMenu = function (menu) { return false; } 
        win.location = url; 
        windows[id] = win; 
        request("embed?" + id); 
    } 
 
The create function creates a browser window with the specified window title using the 
DOM (Document Object Model) [12] function calls, and then sends a request back to 
Entice requesting it embed the Window into Tk. 
 
When Entice receives the embed request it uses TkXext to find the window containing 
the unique ID generated by the entice::new command, and then re-parents it into the 
frame provided as an argument to that command.  
 



This all sounds complicated but is in fact relatively simple – Entice requests Firefox 
create a window and then returns to the application, Firefox creates the window and then 
requests Entice embed it. And this all happens asynchronously - Asynchronous 
Javascript and XML and Tcl. 
 
In fact there are only three commands ever sent from Firefox to Entice (although there 
could be more, as additional functionality is added) 

• init – indicating that entice.xul should be passed to the browser 
• cmd – indicating that the chrome has been loaded, an XMLHttpRequest object 

created and Firefox is ready to accept a command 
• embed – requesting that the specified window ID be re-parented into the Tk 

frame 
 
For each protocol command from Entice to Firefox there is corresponding Javascript 
code that implements the required functionality. This is usually just a call to the Firefox 
DOM, as shown in the following switch statement from within the “command” function: 
  
    switch (cmd) { 
        case "back": 
            win.history.back(); 
            break; 
        case "close": 
            win.close(); 
            break; 
        case "forward": 
            win.history.forward(); 
            break; 
        case "location": 
            win.location.href = url; 
            break; 
        case "new": 
            create(id, url); 
            return; 
        case "print": 
            win.print(); // not yet in the Entice API 
            break; 
        case "reload": 
            win.location.reload(); 
            break; 
        case "replace": 
            win.location.replace(url); 
            break; 
        case "show": 
            break;  // not yet implemented 
        case "hide": 
            break; // not yet implemented 
        case "current": 
            break; // not yet implemented 
    } 
    request("cmd"); // request next command 
 
These commands correspond to the functionality provide by Optcl. New Entice API 
methods can be added by implementing a procedure in entice.tcl and a corresponding 
entry in the command function within entice.xul. 



Problems and opportunities 
 
Whilst Entice works (and works well) it is not without problems. 
 
In particular, it is possible to kill the Tcl/Tk application and leave a Firefox instance 
running.  In the absence of Tcl core support for kill and signal this means interrupt 
handling will need to be done in the application code rather than handled within Entice.  
If this isn’t done right it is possible to have Firefox not respond correctly during the 
initialisation phase (it appears to get confused as to which process it should be talking 
to). As at the time of writing this paper, this problem hasn’t been diagnosed sufficiently to 
provide a workaround. 
 
On the other hand, an opportunity exists to make Entice extensible – that is, provide a 
way for additional methods (and corresponding Javascript commands) to be specified at 
runtime by the application program.  
 
Likewise, the API could be enhanced to facilitate feeding content to the browser from the 
Tcl/Tk application – perhaps using a library like Htmlgen (part of the Tclxml package) – 
which facilitates writing Tcl code that generates structured HTML or XML. 
 
And ultimately Entice could be extended to support Firefox and Safari on MacOS X, 
Firefox on Windows and to wrap OpTcl on Windows – providing a single cross-platform 
API for embedding and controlling a browser within Tcl/Tk.  
 

Deployment and Licensing 
 
Entice is deployed as a Tcl package comprising entice.tcl, entice.xul and a 
corresponding pkgIndex.tcl – it contains no compiled code although it does require the 
TkXext binary extension to be present.  Both Entice and TkXext are fully compatible with 
the Starkit deployment technology – just drop the Entice and TkXext directories into the 
lib directory of an application Starkit and the Entice package is available for use in the 
application. 
 
The code was developed under contract to Eolas Technologies Inc.  Eolas intends to 
release the code for noncommercial use under a Tcl-friendly BSD-style Open Source 
license, while retaining certain intellectual property rights in the code for commercial use.  
Eolas intends to make such a release in the very near future.  For further details, please 
contact Mike Doyle or Jim Stetson at Eolas. 

Conclusion 
 
Entice has achieved the goal of delivering a fully-functional browser within a Tcl/Tk 
application. It does so without the overheads usually involved with wrapping a browser 
library, or the limitations of using one of the Tk browser extensions. 
 
In doing this, Entice brings a new genre of hybrid client/web applications to Linux/Unix –  
and is perhaps the first application of AJAX technology to Tcl/Tk. 



Acknowledgements 
 
Entice is one of the Stargus projects sponsored by Eolas Technologies Inc, who’s 
ongoing support for this and other projects like Cryptkit, Critcl 2 and Vlerq is very much 
appreciated. Accordingly thanks are due to Mike Doyle of Eolas Technologies for his 
support and encouragement. 
 
George Peter Staplin not only developed TkXext but provided fixes, enhancements and 
support when Entice stretched it beyond its initial capabilities. 
 
And thanks to Mark Roseman and Mike Doyle for their reading of the draft of this paper. 
 

References 
[1] OpTcl - http://www2.cmp.uea.ac.uk/~fuzz/optcl/default.html 
[2] Tcom - http://www.vex.net/~cthuang/tcom/ 
[3] NewzPoint - http://wiki.tcl.tk/newzpoint 
[4] TkGecko - http://wiki.tcl.tk/TkGecko 
[5] Starkits - http://www.equi4.com/starkit.html 
[6] Tkhtml - http://tkhtml.tcl.tk/ 
[7] TkXext - http://wiki.tcl.tk/TkXext 
[8] Mozilla Chrome - http://www.mozilla.org/xpfe/ConfigChromeSpec.html 
[9] Mozilla XUL - http://www.mozilla.org/projects/xul/ 
[10] XMLHttpRequest - http://en.wikipedia.org/wiki/XMLHttpRequest 
[11] AJAX - http://en.wikipedia.org/wiki/Ajax_%28programming%29 
[12] DOM - http://en.wikipedia.org/wiki/Document_Object_Model and  
  http://www.mozilla.org/docs/dom/ 
 

 


