
CANTCL: A Package Repository for Tcl

Steve Cassidy

Centre for Language Technology,
Macquarie University, Sydney

E-mail: Steve.Cassidy@mq.edu.au

Abstract

For a long time, Tcl users and developers have re-
quested some kind of coordinated package repository;
CANTCL defines a standard web based interface to
such a repository and provides a reference implemen-
tation. This paper will describe some details of the ref-
erence implementation and develop some ideas for ap-
plications that might be built on top of the capabilities
of CANTCL.

1 Introduction

Many Tcl programmers would like access to a cen-
tral, organised archive of Tcl extension packages both
to store their own work and to get access to the work
of others. Various attempts at setting up a traditional
ftp based repository have not succeeded in gaining a
central place in the Tcl world. This paper describes
CANTCL, a proposal and trial implementation of an
augmented repository which adds significant value to
the simple file stores that have gone before.

2 TIP55

As a precursor to building CANTCL, some work
needed to be done on defining what a Tcl package was
and how it should be built and structured. The Tcl
Extension Architecture (TEA [6]) describes a standard
way of building C coded extensions which has enabled
the inclusion of so many packages in the recent ActiveS-
tate Tcl distributions. However, TEA doesn’t provide
enough information on how to bundle up extensions for
distribution.

TIP55 [1] attempts to solve two problems relating to
package distribution: the layout of files inside a package
bundle and the metadata format associated with these
bundles.

2.1 Directory Structure

In order to be able to automatically install packages,
some knowledge of how they are laid out is needed.
Fortunately, Tcl has settled on a reasonably standard
package structure where each package has its own sub-
directory somewhere on the auto_path. Inside this di-
rectory is a file pkgIndex.tcl which contains Tcl code
to make the package available by sourcing Tcl code or
loading shared libraries.

The simplest Tcl package format then would be an
archive file containing a snapshot of the package direc-
tory from a working installation. To install the pack-
age on another machine, only unpacking of the archive
would be needed. This simple model is complicated
when shared libraries are included in the package since
we must then distinguish the platform or that these
have been built for. The easy way out is to have dif-
ferent packages for different architectures but this pre-
cludes building multi-platform package archives. For-
tunately it is relatively easy to put architecture specific
files in a subdirectory and have the pkgIndex.tcl load
the appropriate one at runtime. In order to make pack-
age directories a little neater, it’s useful to put Tcl code
in it’s own subdirectory also; this can be thought of as
code for the special architecture tcl and so Tcl only
packages can be categorised in this way.

TIP55 adds two directories for documentation and
code examples to this basic set. Documentation should
be considered mandatory for any software being dis-
tributed to third parties and it would be useful to
be able to define the format and naming conventions
of package documentation. At the time of writing of
TIP55 no single standard had emerged for writing Tcl
documentation. Recently the doctools format has ma-
tured and is now widely used; it might be useful to
suggest that a file pkgname.man be included for each
package in the archive. This would allow package help
to be linked in with the online help system on the plat-
form, be that Unix man pages or html based help.

1

The suggested directory layout definied by TIP55 is
then:

packagename$version
+ DESCRIPTION.txt -- Metadata
+ doc/ -- documentation
+ examples/ -- example scripts
+ $architecture/ -- shared libraries
+ pkgIndex.tcl -- package index file

The pkgIndex.tcl file may be omitted if this di-
rectory structure is adhered to as it can be automati-
cally generated – in particular, if multiple architecture
shared libraries are included, a pkgIndex.tcl file can
be generated to load the appropriate version for the
platform.

2.2 Metadata

Metadata is central to a usable package repository; it
allows the repository to find packages based on various
criteria and allows human browsers to decide whether
to download a package or not. TIP55 defines a simple
metadata format which is borrowed from other reposi-
tories such as CRAN [3] and Debian [4]. Also defined
are a number of required fields and their meanings,
for example Creator for the entity creating the pack-
age, Require for a package required by this package.
Some of these names are taken from global metadata
standards [5] and others are taken from other reposi-
tories or are defined just for CANTCL. This gives us
some potential for interoperability with other reposito-
ries and indexing services. Metadata is stored in the
DESCRIPTION.txt file in the top level of the package
directory.

3 URI Interface

An earlier paper [2] describes some of the design con-
siderations that have gone into the development of the
web services interface to CANTCL. The result is a API
based on accessing http URIs for the different services
provided by the repository. All CANTCL URIs are
relative to a base uri http://purl.org/tcl/cantcl
which is a permanent URI which redirects to the
CANTCL cgi script. The first path element following
this names the action being performed on the reposi-
tory (one of package, browse or upload). For brevity,
the prefix will be elided from the examples below. The
three interfaces provided by CANTCL are:

Download is implemented via HTTP GET to a
package URI which contains information about

the package name, version and format. For exam-
ple:

.../cantcl/package/installer0.4.zip

.../cantcl/package/PMG.kit

Download of files from within a package is also
supported:

.../cantcl/package/PMG/tcl/pmgvar.tcl

Browse/Search is implemented via HTTP GET to
a browse URI. The default return type is HTML
but this can be modified by the next path element
(eg. browse/xml or browse/text). Query terms
can be appended to the URI to match fields in the
package metadata. For example:

.../cantcl/browse?requires=tip55

.../cantcl/browse/xml?requires=tip55

Upload is implemented via HTTP POST to .../
cantcl/upload. The file uploaded can be any for-
mat supported by tclVFS, eg zip, starkit, tar file.

Any server implementing the above URI interface
can be considered a CANTCL server. This allows for
the possibility that on the server, packages are stored
as files, inside a metakit database or in CVS.

4 Installing Packages

To install a package from CANTCL it needs to be
downloaded and unpacked in some directory where it
will be found by the default package loading mech-
anism. For Tcl only packages with an existing
pkgIndex.tcl file, this is all that is needed. When
the index file isn’t present, it must be generated by
running pkg_mkIndex with appropriate arguments to
pick up platform specific shared libraries.

There may be systems where more work is needed for
a package to be installed from an archive; for example
it may be necessary to move platform specific libraries
into a system directory. While a general purpose in-
staller is unlikely to be able deal with this problem, a
platform specific script should be able to take advan-
tage of the well defined structure defined by TIP55 to
perform the appropriate installation actions.

As mentioned earlier, another action that could be
performed at installation time is the integration of
package documentation with the standard platform
help system.

This simple installation procedure is made possible
by the well defined structure provided by TIP55; if we
don’t know where to find various package components
such as shared libraries or help files, automatic instal-
lation becomes very difficult.

2

5 A CANTCL Implementation

The initial CANTCL implementation is made up of
a number of packages which provide services relating
to packages, the CANTCL cgi interface and client side
package installation. The packages are described here.

5.1 Packagetip55

The tip55 package provides procedures for ma-
nipulating TIP55 compliant packages. The two pri-
mary areas of functionality are to provide an in-
terface for reading and writing package metadata
and for validating package structure. For example,
tip55::package_description returns a pairlist con-
taining the fields and values from the description file
in a package directory and tip55::validate_package
checks conformance with the TIP55 directory layout
specification.

Since packages might be stored in the file sys-
tem or inside some kind of archive, the tip55 pack-
age provides a utility to work with any mountable
archive as if it were a regular directory. The procedure
tip55::with_mounted_dir ensures that a directory or
archive is mounted while running a piece of code, for
example:

tip55::with_mounted_dir $dir {
set foo [glob -directory $dir *.txt]
...

} except {
puts {Can’t mount directory}

}

Packages can be stored in different locations inside
an archive: eg. in a subdirectory inside a zip file or in
a subdirectory of lib/ in a starkit. To provide a clean
interface to code manipulating packages, the procedure
tip55::foreach_package is provided which executes
code for successive packages inside an archive:

tip55::foreach_package pkgdir $dir {
set desc [tip55::description_name $pkgdir]
...

} except {
puts {Can’t mount directory}

}

5.2 Packagecantcl

The cantcl package provides most of the infrastruc-
ture for the CANTCL server implementation. This can
be split into two parts: decoding URI requests and pro-
viding an interface to the repository.

cantcl::decode_url parses the request URI from
the CGI environment and returns a pair list which can
be used by the server code to decide how to answer the
request. The pair list keys are:

• mode one of package, browse, upload etc

• package package name

• path possibly empty, path inside package

• query query string

• queryvals query terms as a pairlist

cantcl::parse_package_name parses a package
name into it’s components, name, version and for-
mat. For example, mypackage1.9b1.zip is parsed as
{mypackage 1.9b1 zip}.

Other procedures take care of setting up the CGI
environment and performing the appropriate action
based on the URI. The main CANTCL CGI script need
only call cantcl::cgimain with no arguments to im-
plement all server functionality.

The current server implementation keeps package
archives as zip or starkit files in the filesystem and
serves packages directly from this store, converting be-
tween formats as needed.

Since most of the work of the server is done with
reference to the package metadata, this is stored
in a Metakit database organised as an RDF triple
store. Package descriptions are stored as triples of
{packageuri attribute value} where packageuri
is a unique identifier for the package generated by
the system. The triple store is implemented by the
rdfstore package and is designed to be compatible
with a future Tcl RDF package. The triple store is up-
dated either by asking the server to index an existing
directory full of package archives or when a new archive
is uploaded to the server.

When the server CGI script receives a request it first
switches on the kind of request. For a browse or pack-
age request the triple store metakit database is opened
to retrieve information about the package. A browse
request will generate a result page as text, HTML or
XML purely from the triple store. A package request
will use the triple store to locate the appropriate file
and then either return this file (perhaps after convert-
ing it to another format) or mount the file in order to
serve one of the archive contents directly.

If CANTCL becomes a large volume application, the
overhead of opening and closing the database file could
be avoided by running it as a persistent server process
via tclhttpd, mod dtcl or Rivet.

3

5.2.1 Client Side Interface

Part of the cantcl package will be to provide a client
side procedural interface to the CANTCL server. This
will encapsulate the use of the appropriate URIs and
so make it easy for client code to query the server for
package details or download/upload packages.

5.3 Packageinstaller

A long time ago, an installer package was the be-
ginning of this project. Code was written to download
and unpack archives from remote locations and provide
various user interface elements for building installation
tools. Very little work has been done on this recently
and now that the server side tools are implemented this
will be the major focus of the project.

The current installer package allows downloading
and installation of packages. For example:

install_extension .../cantcl/soap.kit

This requires some kind of unzip facility, the easi-
est option being zipvfs but the code can fall back on
an external unzip or prompt the user to unzip the file
manually if this is not available.

Note that since the CANTCL server will allow the
client to look inside a package archive, it might not
be necessary to have a zip application on the client in
order to install an extension.

A bootstrap module could been implemented to
download and install, say tclvfs, in order to enable eas-
ier package installation in future.

In addition to downloading and installing packages
there is a need for a client side interface to package
browsing. In addition to allowing users to discover
packages of interest via some GUI tool, this would al-
low the installer to locate package dependencies that
were not satisfied in the current Tcl installation.

Another relatively simple client side tool would
be to extend the package unknown handler to
look for a package on CANTCL if it is not
found locally. Since a canonical URI can be
generated for any package (http://purl.org/tcl/
cantcl/package.version.format) then it is trivial
to query the CANTCL server for a package and call
install_extension to make it available locally. One
could even use tclvfs to mount the package directory
over http in cases where no writable media are avail-
able.

6 Further Work

CANTCL is still a work in progress and this paper
has presented only a snapshot of what is currently im-

plemented and proposed. It is certainly the case that
with actual use for a wide range of packages and client
side situations, the interface described here will need
to be modified. However, the server as it stands pro-
vides a workable package archive and the development
of client side tools should show the benefits of this ap-
proach. There are of course a number of areas where
it is already clear that work will be needed.

6.1 Starchive

Jean-Claude Wippler’s Starchive [7] proposes a file
store with very fine grained versioning of the individ-
ual files in a package. A particular file bundle is de-
noted by a unique version number which acts as a key
via which the individual files can be located. Only
one copy of each file version is stored in the Starchive.
Hence, starchive provides a base versioned file store
upon which the CANTCL URI interface could be im-
plemented. The advantage would be reduced storage
(no duplicate file versions) and more efficient access
to files (from the MetaKit database rather than the
file system). Once the CANTCL interface becomes ac-
cepted and client side tools are available we will pursue
this server side optimisation.

6.2 Applications

CANTCL could make building custom package bun-
dles and applications in starkit/starpack format much
easier. One can imagine an application driven by a sim-
ple configuration file (possibly even using the TIP55
metadata format) which describes which packages are
needed in an application or bundle. These could then
be downloaded from CANTCL and assembled into a
custom starkit for delivery. An alternative would be to
offer this service on the CANTCL server.

I am currently using an extension of the TIP55 direc-
tory layout to store application scripts packages. The
apps directory contains one or more application scripts
which use the main package. It is relatively simple to
turn a package structured this way into a starkit or
starpack application.

6.3 Platform Dependencies

One area that has not been explored so far is the
provision of packages containing shared libraries for a
variety of platforms. In fact, while writing this pa-
per it is clear that the proposed package download
interface lacks a way of specifying the desired plat-
form of the target package. This can become com-
plicated if one allows multi-platform packages (which

4

TIP55 enables): how do I say “please give me tclvfs

for Windows-x86 and Darwin-ppc”? One option would
be to encode the platform in the package name
(foo_Linux-x86_1.3b2.zip), another would be to use
optional query terms appended to the package URI to
specify additional constraints.

6.4 Authorisation and Security

Currently, file upload to the CANTCL server will
accept any file for inclusion in the repository after a
maintainer approves it. There is a clear need for vari-
ous levels of authorisation for package contributors and
for package users to be able to verify the integrity of a
package archive. There are well understood ways of do-
ing this via digital signatures but these will need some
adaptation for CANTCL due to its ability to repack-
age archives in different formats and (potentially) to
produce multi-package archives.

7 Summary

This paper has described the current state of the
CANTCL project to build a canonical repository of
Tcl packages. The proposal includes the specification
of a web services interface to the repository allowing
both browser based and automated clients to find and
download packages. It is hoped that by the time of
the conference, the CANTCL server will be running at
http://purl.org/tcl/cantcl/ providing the services
described above. The main work remaining is to build
client side tools for package installation and to populate
CANTCL with as many packages as possible.

The CANTCL source code is available via the
SourceForge project at http://cantcl.sf.net . Any
and all input is welcome on the project.

References

[1] S. Cassidy. Ti55: Package format for tcl extensions. Tcl
Improvement Proposal, August 2001. http://purl.

org/tcl/tip/55.html.
[2] S. Cassidy. Defining a web services interface for a

software package repository. In AusWeb Conference,
July 2003. http://www.ics.mq.edu.au/~cassidy/

ausweb2003/.
[3] Canonical R Archive Network. http://cran.

r-project.org/.
[4] Debian linux. http://www.debian.org/.
[5] Dublin Core Metadata Element Set. http://

dublincore.org/documents/2003/06/02/dces/.
[6] Tcl Extension Architecture.

http://www.tcl.tk/doc/tea/.
[7] J.-C. Wippler. Starchive. http://www.equi4.com/

starchive.

5

