
Palm Tcl:
Programming Guide and
Reference

Tcl Programming for Palm OS

DRAFT V0.4

© Ashok P. Nadkarni

 Ashok P. Nadkarni
E-mail: palmtcl@yahoo.com

Table of Contents
Programming Guide 1

Introduction to Palm Tcl 1
About Palm OS 1
About Tcl 1

Why use Palm Tcl 2
When not to use Palm Tcl 2

Futures and limitations 2
About this manual 2
Other Reading 2

Reading about Palm OS 2
Reading about Tcl 3

Credits 3
The Tcl language 3
The prc-tools C development tools 4
The PilRC resource compiler 4
The par resource database utility 4
Toucan – the Palm TCL Integrated Development Environment 4

Palm OS Features 5
User Interface Elements 5

Resources 5
Forms 6
Menus 7
Titles 8
Labels 8
Text fields 8
Lists 10

Scroll bars 11
Buttons and repeating buttons 11
Check boxes and push buttons 12
Selector triggers 13
Popup triggers 14
Tables 14
Graffiti Shift Indicator 16
Clipboard and Selections 16
Handling user input 17
Time and Date Selectors 18
Playing Sounds 18

Palm OS Events 19
Event handling 19
Event generation 19

Data Manager 20
Data Manager Concepts 20

Database creator ID 20
Database type 20
Database records 20

Working with databases 21
System functions 23

Launching applications 23
Palm OS feature support 23

Conduits 23
Palm Tcl Development Environment 24

The Palm Tcl build process 24
Obtaining a Palm OS Creator ID 25
Creating Palm OS resources 25
Linking resources with the Palm Tcl runtime 26
Testing using the Palm OS emulator 27
Tracing using the Palm Reporter 27
Loading an application into a Palm OS PDA 27

Programming by Example 28
Demo - resource definition file 28
Demo – program 28

Demo – compiling resources 28
Demo – linking 28

Palm Tcl Reference 29
Palm Tcl compatibility with Tcl 7.6 29
Alphabetical Reference 30

beep 30
beep ?BEEPTYPE? 30

clipboard 30
clipboard 30
clipboard ?text? 30

clock 30
clock clicks ?-rate? 31
clock format CLOCK_VALUE ?-format FORMAT_STRING? ?–gmt BOOLEAN?31
clock seconds 31
clock selectday ?-by MODE? ?-init BINTIME? ?-title TITLE? 31
clock selecttime ?–start STARTTIME? ?-end ENDTIME?-title TITLE? 32

dm 32
dm create NAME CREATOR TYPE ?-rsrc? 33
dm opendb NAME ?options? 33
dm exists NAME 34
dm list ?-all? ?-name NAME? ?-type TYPE? ?-creator CREATOR? 34
dm delete NAME 34
DBHANDLE close 34
DBHANDLE get RECORDINDEX ?VARNAME? 34
DBHANDLE set RECORDINDEX ?-var? VALUE 35
DBHANDLE delete RECORDINDEX? 35
DBHANDLE count 35
DBHANDLE sort ?options? 35
DBHANDLE recinfo?option? 36

emulator 37
emulator 37
emulator log MESSAGE_STRING 37
emulator source FILENAME 37

event 38

event key KEYCODE 38
event menu MENUID 38
event system SYSTEMCODE 38

form 38
form ids 39
form handles 39
form load RESID ?options? 39
FORMHANDLE unload 40
FORMHANDLE configure ?options?40
FORMHANDLE cget ?options? 40
FORMHANDLE display ?-popup BOOLEAN? 41
FORMHANDLE get RESID ?VARNAME? 41
FORMHANDLE set RESID ?-var? VALUE 41
FORMHANDLE getsel RESID ?VARNAME? 42
FORMHANDLE setsel RESID STARTPOS ENDPOS 43
FORMHANDLE focus ?RESID? 43
FORMHANDLE redraw ?-force? 43
FORMHANDLE itemconfig RESID ?options? 43
FORMHANDLE itemcget RESID ?options? 45
FORMHANDLE tget RESID ?RECINDEX COLUMN? … 46
FORMHANDLE tset RESID ?RECINDEX COLUMN VALUE? … 46

info 46
palm 46

palm launch 47
palm keyboard 47
palm graffitihelp 47

source 47
Event Reference 47

Event Keyword Substitution 47
Appendices 50

Appendix A - Version History 50
Index 53
References 58

Programming Guide Palm Tcl Programming Guide – DRAFT V0.1

Introduction to Palm Tcl
This chapter gives a high level overview of the Palm Tcl language
and development environment.

Palm Tcl is a high level programming language and development environment for
creating applications for handheld devices running the Palm OS operating system. It
allows programmers to write applications without requiring them to know the
intricacies of the Palm OS runtime environment. Programs written in Palm Tcl are
generally an order of magnitude shorter than their C equivalents and can be written in a
fraction of the time.

About Palm OS
Palm OS is the operating system running on the most popular series of personal digital
assistant (PDA) handheld computers – the Palm Organizer series from 3Com and Palm
Computing, the Visor from Handspring and Clie from Sony.

Because it has been custom designed for a PDA environment, Palm OS has some
features as well as hardware resource limitations that impose an additional burden on
programmers who wish to write applications for this platform.

Palm Tcl’s goal is to simplify and accelerate the process of application development for
Palm OS. In its current version (0.3), Palm Tcl supports most form based user interface
elements in Palm OS V3.0, as well as support for databases and several system related
functions.

Applications written in Palm Tcl require at least V3.0 of Palm OS to run.

About Tcl
John Ousterhout at Berkeley created Tcl, the Tool Command Language, in 1988. It
was designed as an open-source scripting language that was easily learned and yet
powerful enough to be used in a wide variety of problem domains.

Even readers who never land up using Palm Tcl are strongly encouraged to learn Tcl
and its associated graphics toolkit Tk. Few other development environment that
comes close to its combination of benefits - ease of learning, speed of development,
portability to a wide variety of platforms and applicability to a wide variety of

1

Palm Tcl Programming Guide – DRAFT V0.1

application domains ranging from user interfaces to systems integration to distributed
processing.

Why use Palm Tcl
Like Tcl, Palm Tcl allows newcomers to Palm OS to be functional in a day, instead of
weeks or months. Even experienced programmers are far more productive.

When not to use Palm Tcl
Palm Tcl is interpreted, not compiled, and as such is not suitable for applications that
are CPU intensive, for example those that require serious number crunching. Palm OS
is not really a suitable platform for these applications anyway.

Futures and limitations
Palm Tcl is still under development and many Palm OS features are not yet supported.
These include font and color support, networking and IrDA, and conduits. These will
be added in a future release.

About this manual
This manual is a user guide and reference for the Palm Tcl development environment
and language. It assumes that the reader is very familiar with the user interface
provided by Palm OS and has programmed in Tcl on other platforms.

The manual uses the following typographical conventions:

Palm Tcl program commands and resource definition file keywords that are to be
entered verbatim are shown in this bold fixed size font.

Parts of a Palm Tcl command or resource definition file that are placeholders for
the actual characters are shown as upper case in this ITALIC FIXED SIZE FONT.

Optional parts of a Palm Tcl command are shown surrounded by question marks
as in ?-var VARNAME?.

Other Reading
Reading about Palm OS
This manual contains some introductory material about the Palm OS environment.
This is likely to be sufficient for simple programs but for more substantial applications,
you will have to refer to the official Palm OS SDK documentation. The general

 2

Palm Tcl Programming Guide – DRAFT V0.1

concepts and features are described in [5] while the detailed reference is contained
in[6].

There are several books on Palm OS programming available, for example [1,2,3].
Naturally, these focus on writing applications in C. Nevertheless, they are useful for
understanding the Palm OS environment and some of its features such as user
interfaces, databases and conduits. Some of these are explained in better detail in the
books than the official Palm OS SDK documentation.

Reading about Tcl
This manual contains no introductory or reference material about Tcl. It assumes the
reader is familiar with the language and only describes how Palm Tcl differs. In addition
to detailing the new commands, the differences with respect to the core language are
described in Palm Tcl compatibility with Tcl 7.6.

For readers who are new to Tcl, there are a number of excellent books listed in the
References section. Of these, [4] is the most relevant because it describes Tcl 7.6, the
version on which Palm Tcl is based. There are several other references listed in
http://starbase.neosoft.com/~claird/comp.lang.Tcl/Tcl_books.html. These describe
a newer version of the language but most of the material is still relevant.

In addition to the books, there is a wealth of material available on the Web. The
Scriptics Corporation web site at http://www.scriptics.com is the logical starting point
for exploring Tcl resources on the Web. Another very useful Web page for the
beginner is http://starbase.neosoft.com/~claird/comp.lang.Tcl/Tcl_tutorials.html
which contains a directory of online Tcl tutorials. A detailed guide to beginning
development with Tcl is the Getting Started section at http://dev.scriptics.com.

Credits
The Palm Tcl development environment is built from several free open source utilities.

The Tcl language
Obviously, without Tcl, there would be no Palm TCL. In addition to John Ousterhout
who invented the language, there is big community of folks on comp.lang.tcl and
elsewhere who keep the language moving forward. At the time of this writing, the
version of Tcl is at 8.3 and is considerably more advanced than the version 7.6 on
which Palm TCL is based. Unfortunately, the latest version has also grown too big to be
suitable for a Palm-sized environment.

 3

http://starbase.neosoft.com/~claird/comp.lang.tcl/tcl_books.html
http://www.scriptics.com/
http://starbase.neosoft.com/~claird/comp.lang.tcl/tcl_tutorials.html
http://dev.scriptics.com/

Palm Tcl Programming Guide – DRAFT V0.1

The prc-tools C development tools
Palm TCL is itself written in C using the prc-tools package. This is a port of the Gnu gcc
compiler chain, by John Marshall and others, to support Palm OS applications.
Without the availability of a free compiler, Palm TCL would never have come into
being.

The PilRC resource compiler
Although any Palm OS resource compiler may be used, the one used in sample code
and described in this manual is PilRC (PILot Resource Compiler). This is a freely
available resource compiler that is downloadable from its official home on the Internet
at http://www.ardiri.com/index.php?redir=palm&cat=pilrc . A version of this tool is
also included in the Palm TCL distribution.

The par resource database utility
The par utility is used to bind the application’s resources to the Palm Tcl runtime
system. This program, written by David Williams, is a general-purpose tool for
manipulating Palm OS resource databases and can be downloaded from
http://djw.org/product/palm/par/index.html.

Toucan – the Palm TCL Integrated Development Environment
Toucan is an integrated development environment for Palm TCL written by Mac Cody.
Amongst other things, it allows for graphical creation and viewing of form elements,
making creation of the latter significantly simpler than editing resource files.
Documentation and software for the latest version of Toucan can be downloaded from
http://home.attbi.com/~maccody/.

 4

http://www.ardiri.com/index.php?redir=palm&cat=pilrc
http://djw.org/product/palm/par/index.html
http://home.attbi.com/~maccody/

Palm OS Features
Provides a short introduction to the Palm OS environment and the features
supported by Palm Tcl.

Like other operating systems, Palm OS provides a fairly extensive programming
interface covering user interfaces, storage, networking and communications. In
addition, there are several aspects of Palm OS that are unique, such as conduits and
categories. This chapter introduces you to those features of Palm OS that are
supported by Palm Tcl. It is not meant to be anything other than a very rudimentary
introduction but should be sufficient to get started. Refer to [5] and [6] for a detailed
description of Palm OS.

User Interface Elements
Resources
A Palm OS application is stored as a resource database. A resource is a data structure that
contains a component of an application, for example its code, or icon, or structures
that describe its user interface elements such as forms, menus etc.

The user interface elements in a Palm OS application are generally not created
dynamically. Rather, they are defined and created as static structures through a program
such as pilrc. These programs take a resource definition file that describes the static
structure of the user interface, such as position and size of the user interface elements,
and converts it to a Palm OS resource. The application program code is then
responsible for the dynamic aspects of the user interface, such as handling button taps,
displaying dynamic content and so on.

All the user interface elements discussed in the rest of this section are defined and
created through a resource definition file. Although any resource creation program may
be used, the documentation assumes you are using the pilrc (PILot Resource
Compiler) program. This is a free program that is available from the Internet from
http://www.hig.se/~ardiri/development/palmIII/pilrc/index.html. The example
Palm Tcl application Demo - resource definition file illustrates some of the basic
features of the program. However, this manual does not document all the pilrc
features or the syntax of the resource definition file it uses. Refer to the documentation
that comes with that program for a full description.

Resources are identified by a resource type code, which indicates the type of resource
(string, button, text field etc.) and a resource id, which is a number between 1 and 65535

http://www.hig.se/~ardiri/development/palmIII/pilrc/index.html

Palm Tcl Programming Guide – DRAFT V0.1

that is used to distinguish between multiple resources of the same type. Resources are
loaded and manipulated using these two items. Generally, the type of resource is
implicit in the function being invoked, while the resource id is explicitly specified.

Note that all resource ids above 10000 are reserved by Palm OS for system use.
Moreover, Palm Tcl reserves the use of the resource id 9999. This resource id must be
associated with a string resource that contains the Palm Tcl script to be invoked when
the application starts.

Forms
Although Palm OS does provide low level windowing and graphics routines, Palm Tcl
is focused on applications that are based on Palm OS forms1. Using terminology from
other windowing systems, a Palm OS form is basically a container window with a title
and menu that collects together various user interface elements, such as buttons and
text fields, that are functionally related. An application usually consists of a number of
these forms that the user navigates through using buttons or menu selections.

Form resources are defined using the FORM keyword in a pilrc resource definition file
and appear at the syntactic top level. User interface elements contained within a form
are enclosed within the definition of the parent form.

The following defines a form in a resource definition file.

FORM ID 500 AT (0 0 160 160)

MENUID 550

Resource id of the menu associated with the form

Defines form position and

NOFRAME Indicates no border to be drawn around form

BEGIN
 TITLE "Palm TCL Demonstration"

Start of form element defintions

 FIELD ID 501 AT (10 20 140 80) FONT 0 NONEDITABLE MULTIPLELINES
 SCROLLBAR ID 502 AT (150 20 7 80) VALUE 0 MIN 0 MAX 0 PAGESIZE 0
 BUTTON "User Interface Demo" ID 503 AT (40 120 AUTO AUTO) FONT 0
 BUTTON "Address Book Demo" ID 504 AT (40 140 AUTO AUTO) FONT 0
END End of form definition

In Palm Tcl, loading a form resource through the form load command instantiates a
Tcl command which is used to access or manipulate the form and all the user interface
elements contained within it. The following code loads and displays the above form

.

set form [form load 500 –menucmd {menuproc %W %S}]

Loads a form
Function menuproc will be
called when a menu item is
selected while the form is active

$form set 501 {This is a simple demo} Initializes a form element

 6

1 This is true of most Palm OS applications. Games are a notable exception.

Palm Tcl Programming Guide – DRAFT V0.1

$form itemconfig 503 –command {%W unload; loadnextform}

$form display

Displays the form

Binds a command to a button on the
form to unload the form and call a
function to display a different one

As shown in the sample, the normal sequence for displaying a form is

• Load the resource containing the form definition, optionally defining the Palm
Tcl procedure to invoke for menus attached to the form

• Initialize the various form elements within the form, including binding
commands to be executed when elements such as buttons are selected

• Display the form

Multiple forms may be loaded simultaneously. However, in order to conserve limited
resources, it is recommended that forms be unloaded when not in use.

Menus
Menus are defined in a pilrc resource definition file through the MENU keyword. Unlike
most other form elements, menu definitions appear at the top level in the file and not
inside a FORM definition. A menu is associated with a form through the MENUID form
attribute (see Forms). This takes a parameter that is the resource id of the menu to be
attached to the form.

A single menu definition may be shared between multiple forms by specifying the
same menu resource id as the MENUID parameter for all the forms.

Within a MENU definition, the PULLDOWN pilrc keyword may be used define submenus.
Within each submenu, the MENUITEM keyword defines individual menu items that may
be selected by the user. A sample menu definition is shown below:

MENU ID 550
BEGIN
 PULLDOWN “Demos”
 BEGIN
 MENUITEM “UI Demo” ID 551

Define an individual menu

Defines a submenu pulldown
Defines a menu resource

 MENUITEM “Address Book Demo” ID 552
 END
END End menu definition

End submenu definition

In Palm Tcl, menu selections are handled by associating a script with a form through
the –menucmd option to the form load command. This script is run whenever the user
makes a menu selection while the associated form is active. The script may contain
event keywords that are substituted before the script is executed as described in Event
Keyword Substitution. Two event keywords - %S and %W - are particularly useful for
menu events. The %S event keyword in the script is replaced with the resource id of the

 7

Palm Tcl Programming Guide – DRAFT V0.1

menu item being selected. The %W keyword is replaced with the active form handle to
which the menu is attached. This is useful when a menu is shared among multiple
forms.

The example in Forms showed how a callback function menuproc was registered
through the –menucmd option. The code fragment below shows a possible
implementation of this function:

proc menu {form id} {
 switch -exact -- $id {

551 {$form unload; source 9997}
 552 {$form unload; source 9998}

Corresponds to %W event keyword specified in the –menucmd
parameter.

Corresponds to %S event keyword specified in the –
menucmd parameter and is the resource id of the
selected menu item. The function switch statement
executes code based on the menu item selected.

 default { fatal "Unknown menu item $id" }
 }
}

Titles
The TITLE keyword may be used within a FORM definition in a resource definition file to
define the string to be shown as the title of a displayed form. This string is statically
defined through the resource file and Palm Tcl does not provide any means of
accessing it. See the example in Forms for a sample definition.

Labels
A label resource is used to display noneditable text strings in a form. Labels are defined
in a resource definition file through the LABEL keyword.

Palm Tcl does not provide any means of modifying a label and hence labels should not
be used to display strings that may change at runtime. The value of a label resource
may be obtained through the FORMHANDLE get command.

 Use a text field with the NONEDITABLE attribute to display noneditable text
that can be dynamically changed at runtime. However, do not use text
fields for static text that does not change since fields take up more
memory resources than labels.

Text fields
A field is a user interface element that displays one or more lines of text. Fields are
defined in the resource file through the FIELD keyword and have several attributes

 8

Palm Tcl Programming Guide – DRAFT V0.1

associated with them such as fonts and alignment. The pilrc keywords for some of
the common attributes are shown in Table 1.

FONT Defines the font number to be used for the
field.

LEFTALIGN/RIGHTALIGN Specifies the text alignment within the field.

EDITABLE/NONEDITABLE Controls whether the user can edit the field or
not.

SINGLELINE/MULTIPLELINES Specifies whether the field can extend over
multiple lines.

UNDERLINED If specified, the whole field is underlined. This
is usually set on editable fields as a visual cue
to the user that the field can be modified.

MAXCHARS The maximum number of characters that can
be allowed in the field. Because of a bug in
some versions of pilrc, this attribute
must be present for editable fields to work
correctly.

HASSCROLLBAR This attribute does not display a scrollbar for
the field. It is only used to indicate to Palm
OS that additional events related to scrolling
should be generated for this field. This
attribute is not required with Palm Tcl even if
the field needs a scroll bar.

Table 1

The contents of a field may be programmatically retrieved or set using the FORMHANDLE
get and FORMHANDLE set commands respectively.

Field contents may exceed the display area available for the field. In this case, the field
must be associated with a scroll bar that must be separately defined in the resource file
and positioned appropriately next to the field. Although Palm OS itself does not
automatically support a scroll bar for fields as it does for lists, it is easy to support the
functionality in Palm Tcl by associating the scroll bar with the field through the
FORMHANDLE itemconfig command. This command must be executed after the form is
loaded but before it is displayed on the screen.

The following resource definition lines (assumed to be inside a FORM BEGIN..END
block) define a field resource and a scrollbar that will be programmatically associated
with the field.

 9

Palm Tcl Programming Guide – DRAFT V0.1

 FIELD ID 1401 AT (10 20 140 50) FONT 0 UNDERLINED MULTIPLELINES MAXCHARS 256
 SCROLLBAR ID 1402 AT (PrevRight PrevTop 7 50) VALUE 1 MIN 1 MAX 1 PAGESIZE 1

The following code fragment then attaches the scroll bar to the field. Palm Tcl then
automatically handles all scrolling.

$form itemconfig 1402 -scroll 1401

Lists
A list is used for displaying a set of choices to the user. It is defined in the resource file
by the LIST keyword, which must appear within a FORM definition.

The text strings to be displayed as the choices in the list may be included as part of the
LIST definition. This is preferable if the set of choices is static and does not change.
Alternatively, the set of choices displayed can be dynamically changed through the
FORMHANDLE set command and retrieved through the FORMHANDLE get command. Both
these take a Tcl list as an argument.

Users can select a list item by tapping on it. This deselects the currently selected item if
any, and highlights the tapped item. The selected item can be retrieved in Palm Tcl
through the FORMHANDLE getsel command. Scripts can be registered for execution in
response to a user selecting a list item. This is done through the –command option to the
FORMHANDLE itemconfig command. The script may contain event keywords that are
substituted before the script is executed as described in Event Keyword Substitution.

The following example illustrates some of these techniques. The resource definition
lines (assumed to be inside a FORM BEGIN..END block) define a list and a field resource
that will be display the currently selected item in the list. In this example, the list is
populated programmatically. If the items in the list were fixed and known before hand,
they could simply have been included in the resource definition.

LIST "Dummy" ID 1302 AT (10 10 70 AUTO) FONT 0 VISIBLEITEMS 4

Position the scroll bar right next to
the field. The height of the
scrollbar should equal that of the
field.

Define a scrollbar. Nothing
in the resource file
associates this with the
field

Resource id of field to scroll when scrollbar is
moved

Resource id of scrollbar

Defines a list
List elements. In this example, we will
programmatically fill the list so we only define a
single element here

Indicate that 4
items should be
visible at a time

Defines a field element that extends over multiple lines

 FIELD ID 1304 AT (10 PrevBottom+2 140 20) FONT 0 NONEDITABLE MAXCHARS 255

The following code populates the list and then displays the list item that the user clicks
on in the field.

set items {}

 10

Palm Tcl Programming Guide – DRAFT V0.1

for {set i 0} {$i < 10} {incr i} {

Create a Tcl list in variable
items

 lappend items "This is item $i"
Show the items in
the displayed list

}
$form set 1302 $items

$form itemconfig 1302 -command "$form set 1304 \[$form getsel 1302\]"

 Gets the currently selected
list item. Note the escaping of
the [and] characters since
we want to get the selectio
when the command executes,
not when it is bound to the

n

Binds a command
to set the field to be
executed when an
item in the list is
selected.

Palm OS will automatically provide scrolling support for a list if required. No special
programming needs to be done for this.

In addition to being directly displayed, lists may also be used in conjunction with a
popup triggers to display popup lists that are visible only when the user taps on a
control.

Scroll bars
Scroll bars are used in Palm OS in conjunction with fields, lists, and tables when the
contents of the user interface element do not fit within the element’s display area. Palm
OS only supports vertical scroll bars, not horizontal. Scroll bars are defined in the
resource definition file through the SCROLLBAR keyword.

Palm OS automatically handles scroll bars and scrolling for lists but not for fields or
tables. It is easy in Palm Tcl to support scroll bars for fields through the command

FORMHANDLE itemconfig SCROLLRESID –scroll FIELDRESID

This takes care of all scrolling requirements for the field. See FORMHANDLE itemconfig
for details. An example of using a scroll bar with a field is shown in Text fields.

The current state of the scroll bar (size, scroll position etc.) can be retrieved and set
through the FORMHANDLE get and FORMHANDLE set commands. However, this is rarely
required.

Buttons and repeating buttons
Buttons and repeating buttons display a text string in a (optional) box and can be
tapped by the user to invoke a command. They are defined in the resource file through
the BUTTON and REPEATBUTTON keywords respectively. Various attributes each keyword
control the visual appearance of the button such as the presence of a surrounding box.

The difference between the two types of buttons is that a normal button sends a single
event to the application in response to a user tap. A repeating button will keep sending
events to the application until the user lifts the stylus from the button.

 11

Palm Tcl Programming Guide – DRAFT V0.1

A Palm Tcl program can respond to both types of events by associating a script with
the button. This is done through the –command option to the FORMHANDLE itemconfig
command. The script may contain event keywords that are substituted before the
script is executed as described in Event Keyword Substitution.

The example below illustrates use of a repeating button. The resource definition lines
(assumed to be inside a FORM BEGIN..END block) define a repeating button and a field
that will display a running count of events generated until the stylus is lifted from the
button.

AUTO keyword indicates height
and width of button is
automatically calculated based

 REPEATBUTTON "Repeat" ID 1702 AT (10 10 AUTO AUTO) FONT 0

Defines repeating
button resource

 FIELD ID 1703 AT (80 PREVTOP 30 30) FONT 0 NONEDITABLE UNDERLINED

The corresponding script registers a command to increment and display the value of a
variable as long as the repeat button remains pressed.

global repeat_count
set repeat_count 0

$form set 1703 0

Initialize the field

Variable to hold count of
button events

$form itemconfig 1702 -command {%W set 1703 [incr repeat_count]; %W redraw}

Force screen to be
updated right away

Callback command to
increment counter and
show it in the field on
every button press

Note the call to the FORMHANDLE redraw function. This is often required with a
repeating button for the following reason – Palm Tcl redraws the display in the
background when there are no events to be handled. This makes for more efficient
processing allowing, for example, batching of screen updates. In the case of a repeating
button, this can be confusing to the user. In the example above, if the explicit redraw
command were not present, the variable repeat_count would be incremented
continuously as long as the stylus remained on the repeating button. However, the
screen would not be updated until the stylus was lifted at which point the final value of
repeat_count would be displayed. The user would not see a continuous change in the
value. Use of the redraw command forces the screen to be updated as the
repeat_count variable changes. The user then sees the value changing incrementally as
long as the button remains pressed.

Check boxes and push buttons
Check boxes and push buttons are both user interface elements that display two-state
settings – on and off. They are toggled between the two states by user taps. Check
boxes are on when they are checked and off when they are unchecked. Push buttons
are on when they appear inverted and off when they have the default form
foreground/background colors. Both types may have a text label associated with them.

 12

Palm Tcl Programming Guide – DRAFT V0.1

Labels are shown next to a check box or inside a push button frame and can be
changed through the –label option to the FORMHANDLE itemconfig command.

Check boxes and push buttons are defined in a resource file by the keywords CHECKBOX
and PUSHBUTTON respectively. Their state can be read from Palm Tcl through the
FORMHANDLE get command. Conversely, the state can be toggled by the FORMHANDLE set
command.

You can also associate a Palm Tcl script to be executed when the user taps a check box
or push button. This is done through the –command option to the FORMHANDLE
itemconfig command. The script may contain event keywords that are substituted
before the script is executed as described in Event Keyword Substitution.

Palm Tcl also supports grouping of multiple check boxes or push buttons in such a
manner that exactly one in a group is on. This is similar to radio buttons in the
Windows environment. Adding the GROUP attribute to a CHECKBOX or PUSHBUTTON
definition accomplishes this grouping. The GROUP attribute has an associated parameter
that is the group number. All check boxes or push buttons that belong to the same group
should have the same non-zero group number. When a check box or push button in a
group is turned on, either programmatically or by a user tap, the others in the group
will automatically be turned off. Note that it is not possible (or logical) to turn off a
check box or push button that belongs to a group. Attempting to do so will generate a
Tcl error exception. You can only turn an element off by turning on some other element
in the group.

Selector triggers
A selector trigger displays a label surrounded by a rectangular button frame. The size of
the button changes when the text in the button is programmatically modified. These
controls are usually used to display a popup dialog from which the user can make a
selection. The selected value is then displayed as the selector trigger label. A common
use of selector triggers is to display the Palm OS built in day and time selection dialogs.

A selector trigger is defined in a resource file by the keyword SELECTORTRIGGER.

You can also associate a Palm Tcl script to be executed when the user taps a selector
trigger. This is done through the –command option to the FORMHANDLE itemconfig
command. The script may contain event keywords that are substituted before the
script is executed as described in Event Keyword Substitution. This command may do
some computation or display a dialog and then set the label of the selector trigger
through the –label option to the FORMHANDLE itemconfig command.

See Time and Date Selectors for an example.

 13

Palm Tcl Programming Guide – DRAFT V0.1

Popup triggers
A popup trigger displays a text label to the right of a graphic icon that indicates that the
element controls a popup list. Popup triggers and lists are used in combination. The
popup trigger is defined in a resource file through the POPUPTRIGGER keyword and then
associated with a list with POPUPLIST keyword that ties the resource id of the popup
trigger with that of a list resource.

Usually, the label displayed in a popup trigger is automatically set based on the
selection made in the popup list. However, it can also be set through the –label option
to the FORMHANDLE itemconfig command.

The list associated with the popup trigger may be either defined in the resource file or
dynamically created at run time. If dynamically created, the script should also set the
label associated with the control appropriately. The list must have the NONUSABLE
attribute else it will be visible event when the trigger is not tapped.

The following example shows a popup trigger that is associated with a dynamically
created list.

 LIST "Dummy" ID 1902 AT (PrevLeft PrevBottom+2 70 AUTO) FONT 0 NONUSABLE
VISIBLEITEMS 3

 POPUPTRIGGER "Demo PopupTrigger" ID 1903 AT (7 82 AUTO AUTO) FONT 0

 POPUPLIST 1903 1902

The script itself does not have to do much except populate the dynamic list (see Lists)
and set the initial popup trigger label.

Tables
Tables are used to display data in columnar format. Tables consist of cells, each of
which is identified by its row and column position within the table. Although Palm OS
supports table cells of many types, Palm TCL currently only supports table cells that are
contain editable text and checkboxes.

A table is defined in a resource file by the keyword TABLE. The pilrc keywords for
some of the common attributes are shown in Table 2.

COLUMNS Specifies the number of columns in the table.

COLUMNWIDTHS Specifies the width for each column type.

Define the popup trigger element

Associate the popup
trigger (1903) with the
list (1902)

List resource that will be
associated with the popup

Note that the list must have
NONUSABLE attribute

 14

Palm Tcl Programming Guide – DRAFT V0.1

ROWS Specifies the number of rows in the table.

Table 2

Tables are amongst the most complex user interface elements to program in Palm OS.
Palm TCL hides much of this complexity by providing built in support for features
such as scrolling. Nevertheless, tables still require significantly more programming than
the other user interface elements.

Conceptually, a Palm TCL table can be thought of as a window into an array of data
records. The position of this window in the set of records can be controlled either
programmatically by the application or internally by Palm TCL in response to various
user input events. Callback routines may be defined to return appropriate records to
Palm TCL for display.

When a form containing a table is loaded, the table must first be initialized to set the
type of each column. This is done through the –coltypes option to the FORMHANDLE
itemconfig command. This must be done before the form is displayed and cannot be
changed thereafter. Next, the table must be initialized with the number of elements in
the record set and the index of the record that is the displayed in the topmost row of
the table. This is accomplished through the –num_items and -top options to the
FORMHANDLE itemconfig command. In the simple case where the size of the array is
fixed and equal to the number of rows in the displayed table, these options need to be
set only once. An example of this is when a table is used to display the fields of a single
record in a database. In more complex tables, where the table displays part of the data
array, the -top option may be used to display different portions of the data. Moreover,
if new elements may get added or removed from the data, Palm TCL must be informed
of the change through additional calls using the –num_items option.

In most cases, a table needs to be capable of scrolling. This is true even if the size of
the data array is fixed and equal to the number of rows in the table. The reason for this
is that if any columns contain editable text fields, the area occupied by the text field can
grow and shrink causing other rows to be scrolled off the display (or scrolled in). To
manage this without a lot of programming on the application’s part, Palm TCL allows
association of buttons with a table through the –downscroll and -upscroll options to
the FORMHANDLE itemconfig command. Palm TCL then automatically handles the
scrolling internally. Note that the effect of the buttons is to scroll tables a page at a time,
as opposed to line by line scrolling. This is in keeping with the behavior of the built in
Palm OS applications.

The contents of the table can be set and retrieved using the FORMHANDLE tset and
FORMHANDLE tget commands. However, if scrolling is enabled in the table, then Palm
TCL needs to have the ability to load the contents of any row on demand. This is done
through by specifying a callback script through the -datacmd options to the
FORMHANDLE itemconfig command. This callback is invoked whenever Palm TCL needs

 15

Palm Tcl Programming Guide – DRAFT V0.1

to retrieve data from the application to be displayed in the table or when it needs to
notify the application to store the data after it has been modified.

Graffiti Shift Indicator
This section to be written.

Clipboard and Selections
Palm OS maintains a clipboard that can be used for cutting, copying and pasting of data
between applications. Although Palm OS itself allows three types of data to be stored
in the clipboard – text, bitmaps and ink – Palm Tcl only supports storing and retrieval
of text data to and from the clipboard.

Access to the clipboard is provided through the clipboard command. Normally, this
command should be used in a procedure that is bound to a menu item or keyboard
shortcut to allow the user to copy selected data to and from the clipboard.

The clipboard is often used in conjunction with selections. Palm Tcl allows retrieval of
the currently selected text with the FORMHANDLE getsel command. This command
returns the currently selected text for field and list form elements. The sample code
below shows a procedure that might be bound to a menu item to cut or copy text
selected in a field element.

Cut the current selection to the clipboard
$form is the form handle
$op is the operation – cut or copy
proc cutcopy {form op} {
 # Get the current focus and return if no focus
 set focus [$form focus]
 if ![string length $focus] return

 # We will only allow cut and paste for fields
 if [string compare [$form itemcget $focus -type] field] return

 # Get the selected range
 foreach {start end} [$form getsel $focus temp] break

$temp contains selection

 # Nothing selected so nothing to do

$start and $end
contain offset of start
and end of selected

 if ![string length $start] return

 # Copy selection to clipboard
 clipboard $temp

 # All done if copy operation
 if [string compare $op cut] return

 # Delete selection from current field content
 set temp [$form get $focus]
 incr start –1
 set temp "[string range $temp 0 $start][string range $temp $end end]"
 $form set $focus $temp
}

 16

Palm Tcl Programming Guide – DRAFT V0.1

Conversely, the following code pastes the current clipboard contents into the field
currently having focus.

Paste the current selection to a field
proc paste {form} {
 # Get the current focus and return if no focus
 set focus [$form focus]
 if ![string length $focus] return

 # We will only allow cut and paste for fields
 if [string compare [$form itemcget $focus -type] field] return

 # Get current clipboard contents
 set ins [clipboard]
 set inslen [string length $ins]

 # If clipboard empty, nothing to paste
 if !$inslen return

 # Get current contents of field with focus
 set text [$form get $focus]

 # Find the current insert position …
 set inspos [$form itemcget $focus -inspos]
 # …and insert text there
 $form set $focus "[string range $text 0 [expr $inspos-1]]$ins[string range

$text $inspos end]"

 # Finally set insert position to end of pasted text
 $form itemconfig $focus -inspos [expr $inspos+$inslen]
}

Handling user input
In general, applications do not need to be directly concerned with graffiti or user
character input. The Palm OS widgets, such as fields, take care of handling input in
most cases. Under some circumstances, applications may wish to capture input keys
and somehow process these before the default handling of the Palm OS widgets. For
example, the application may convert all input lower case characters to upper case.
This can be accomplished by establishing an event handler for the form to trap key
events. See Event handling for an example.

Users may also interact with the device through the various hardware and silkscreen
buttons, such as the power button, the calendar button, the page-up button, the
application launcher icon etc. Palm Tcl applications can capture and respond to these
actions as well using the common event handling mechanism described in Event
handling.

Palm Tcl also supports two utility features provided by Palm OS that are intended to
help users with data input:

• The palm keyboard command lets users input characters using an on-screen
keyboard instead of graffiti.

 17

Palm Tcl Programming Guide – DRAFT V0.1

• The palm graffitihelp command displays a pop-up table showing the graffiti
strokes for each character.

This section to be written.Graffiti functions

Keyboard popup

Time and Date Selectors
Palm OS provides dialog boxes that allow the user to select time and date ranges.
These dialog boxes are flexible enough to support selection in a number of ways; for
example, the date selector dialog box allows selection of a day, by day, week or month.
Palm TCL provides access to these built-in dialogs through the clock selectday and
clock selecttime commands.

An example of using time and date selectors in conjunction with a selector trigger is
shown below. Tapping the selector trigger will display a date dialog that allows the user
to select a specific date. The date is then displayed as the label of the trigger.

 SELECTORTRIGGER "Select Day" ID 1802 AT (10 10 AUTO AUTO) FONT 0

Defines a selector trigger with
an initial label Select Day

The currently displayed
label will control size of
trigger

The script fragment below registers a command to pop up a date selector dialog when
the trigger is tapped and displays the user-selected date in the trigger. The dialog
returns either the binary time corresponding to the date selected by the user, or an
empty string if the user cancelled the dialog.

$form itemconfig 1802 -label "Select a day" -command {
 set date [clock selectday] Display date selection dialog

 if {$date != ""} {%W itemconfig 1802 -label [clock format $date]}

Change selector trigger label based
on date selected

}

Playing Sounds
Palm TCL provides access to some of the sound playing capabilities of Palm OS
through the beep command. Only access to the basic system sounds is provided. There
is no support for more sophisticated capabilities such as playing MIDI files.

 18

Palm Tcl Programming Guide – DRAFT V0.1

Palm OS Events
Event handling
Palm OS generates several types of events corresponding to graffiti input, hardware
button presses and other system events. The Event Reference describes the various
types of events that are visible in Palm TCL, and how scripts may be invoked in
response to them.

Palm Tcl allows an application to intercept all these various events through event
handlers. In the current version of Palm Tcl, event-handling scripts are registered on a
per form basis through the –command option to the form load command. It is then the
responsibility of the script to de-multiplex all the events it is passed and handle the
ones that are of interest. The example in Event generation illustrates this.

In addition to processing the events themselves, the event handling script may choose
to either pass on the event to the default handlers or bypass them.

Note that unlike the mainstream version of Tcl/Tk, Palm Tcl does not allow more than
one script to be registered (for a particular form). There is no chainining mechanism as
such. Of course an application can always implement its own chaining framework
through a single entry point if desired.

Event generation
In addition to handling events, it is also possible for a script to generate an event to
simulate data entry or any other system event. This is accomplished through the event
command. For example, the statement

event system power

will cause the system to power off just as if the power off button was pressed.

Event handling and event generation can be used in combination. The following
example converts all input characters to a form to upper case. An event handling script
is attached to the form when it is loaded. All events will be passed to this script while
the form is active. The script checks to see if the event is a key event for a lower case
character. If so, it generates a new event with the corresponding upper case character
and returns a –break code so that the default handlers for the key event are not run. In
other cases it returns normally to allow the default handlers to process the event.

set script {
 if [string compare %E key] return
 set ch “%A”

Define a multi-line script to handle all events
Ignore all events that are not key
events and let default handlers

 set uch [string toupper $ch]
 if ![string compare $ch $uch] return
 event key $uch
 return –code break

Not lower case letter. Let
default handlers process the

Generate a new event with the upper case character

Return a break code so that default
handlers for the event are not invoked

 19

Palm Tcl Programming Guide – DRAFT V0.1

} end of script

set form [form load $form_resid –menucmd menucmd –command $script]

 Register the script to be
invoked to handle all events
when the form is active

Data Manager
Storage of data in Palm OS does not2 follow the traditional directory/file model
generally used in the computing world. Rather, data in Palm OS is stored in databases
that hold records whose format is application dependent. A Palm OS interface known as
the Data Manager provides the interface to access and manipulate databases and
records. Palm Tcl exposes a considerably simplified version of this interface at the
expense of some efficiency and features. Some of the features not supported by this
version of Palm Tcl are:

• categories

• secret/hidden records

These features will be added in future versions of Palm Tcl.

Data Manager Concepts
Database creator ID
All databases stored on a Palm OS device are associated with a creator id. Generally, the
creator id for a database should be the same as the creator id of the application that
created the database. When an application is deleted from a Palm OS device, all
databases with the same creator id are also deleted. In Palm Tcl, the creator id for a
database is specified at the time it is created through the dm create command.

Database type
Along with the creator id, each database also has a type field that may be used to
distinguish between databases with the same creator id. Like the creator id, this must
also be a four-character string. A common one to use for databases is simply the string
data. Like the creator id, the type for a database is specified at the time it is created
through the dm create command.

Database records
A database in Palm Tcl can be viewed as a variable size array whose elements (records)
are identified and accessed based on their position. The term record index refers to the
position of a record in the array. Each record is also associated with a unique id which
can be used to track the record even its position (index) in the database changes during

 20

2 This is not strictly true. There are some streaming file interfaces but these are generally meant to help in
porting applications and do not follow the Palm design philopsohy.

Palm Tcl Programming Guide – DRAFT V0.1

operations such as sorting. The DBHANDLE recinfo command allows mapping between
record indices and their unique id’s.

The value of a record in a Palm Tcl database is simply a Tcl list. An element of the list
then becomes a field record. The record is created using the Tcl list command and
individual fields are accessed using the lindex command.

Working with databases
Working with databases in Palm Tcl is fairly simple. Databases are created though the
dm create command. The commands dm list and dm exists may be used to
enumerate databases and to check for existence. The command dm delete may be
used to delete an entire database.

A database has to be opened before it can be accessed. This is done through the dm
opendb command, which returns a handle to the opened database. Similar to traditional
file access interfaces, this command allows the caller to specify the mode - read-only,
exclusive etc. - in which the database is to be opened.

Once open, the individual records in the database can be read and written through the
DBHANDLE get and DBHANDLE set commands respectively (where DBHANDLE is the
handle of the opened database). The following code snippet illustrates use of these
commands:

Create a database (firstname, lastname)
dm create testdb TEST data
set db [dm opendb testdb -rw]
$db set end [list John Ousterhout]
$db set end [list Larry Wall]
$db close

Reopen the database for reading and iterate through the records
set db [dm opendb testdb -ro]
for {set i 0} {} {incr i} {
 set data [$db get $i]
 if {[llength $data] == 0} {
 # No more records
 break
 }
 # Do something with $data
}
$db close

In addition, if the –var VARNAME option is specified with the dm opendb command,
database records may also be directly accessed using the standard TCL syntax for
arrays. The array index must be an integer and corresponds to the index of the record
in the database. As a special case, the string end may be used to append new records to
the end of the database. The code snippet below is identical to the one above except
that it uses this method of accessing the database.

 21

Palm Tcl Programming Guide – DRAFT V0.1

Create a database (firstname, lastname)
dm create testdb TEST data
set db [dm opendb testdb –rw –var names]
set names(end) [list John Ousterhout]
set names(end) [list Larry Wall]
$db close

Reopen the database for reading and iterate through the records
set db [dm opendb testdb –ro –var names]
for {set i 0} {} {incr i} {
 set data $names($i)
 if {[llength $data] == 0} {
 # No more records
 break
 }
 # Do something with $data
}
$db close

Records may be deleted through the DBHANDLE delete command. Note that when a
record is deleted, the indices of records that follow it in the database are all
decremented by one.

Finally, the database is closed by calling the command DBHANDLE close. This releases
any associated resources after closing the database. It is generally good practice to close
databases explicitly even though any open databases are automatically closed when a
Palm Tcl application exits.

Databases may be sorted using the DBHANDLE sort command. This command provides
various options for the sort criteria including the sort algorithm, the record field to sort
on, the sort order, and the record comparison type (integer, string etc.). The sort
algorithm may be specified to be either the insertion sort or quicksort. The former
should be used when adding or modifying a single record in a database that is already
sorted. The latter should be used in all other cases including when changing the sort
criteria for the database.

In many cases, an application may need to find the new position of a record (the
current working record for example) after a sort. The following example shows a
function to do that.

Resorts the database and returns new index of record at position $recI
dbH is a handle to the database
proc reposition {dbH recI} {
 # Get the unique id of the record at position $recI
 set id [$dbH recinfo getid $recI]
 # Resort using insertion sort assuming only one record is changed
 $dbH sort -method isort -index 0 –stricmp
 # Return position of record identified by the unique id
 $dbH recinfo getindex $id
}

 22

Palm Tcl Programming Guide – DRAFT V0.1

System functions
Launching applications
The palm launch command invokes the Palm OS system application launcher. There
is no mechanism in the current version of Palm Tcl to invoke any other application.
Note that this also ends the current application and in essence is the equivalent of a
tradition Tcl exit command.

Palm OS feature support
Not implemented

Conduits
This section to be written.

 23

Palm Tcl Development Environment
Describes the tools and process for creating an application using Palm Tcl.

The Palm Tcl build process
The general process for building an application using Palm Tcl is as follows:

Step 1. Obtain a creator id for your application from Palm Computing
(tradema k?) r

Step 2. Using any text editor, create a resource description file that defines the
user interface elements. This step is no different than if you were
programming Palm OS in C using the gcc based prc-tools development
environment. Define a string resource in your resource definition file
that points to your Palm Tcl program file(s). The resource id 9999
should refer to the script file that should be executed by the Palm Tcl
engine at program startup. See Creating Palm OS resources.

Step 3. Write your Palm Tcl program. Your program need not be contained
within a single file, although it is a little more convenient to structure it
that way. Make sure the file that contains your startup code has a
resource id 9999 in your resource definition file.

Step 4. Convert your resource definitions and Palm Tcl scripts into binary
resource files using the pilrc program. This will create several *.bin
files corresponding to your resources. See Creating Palm OS resources.

Step 5. Use the par program to link the user interface and Palm Tcl program
binary resources created in Step 3 with the Palm Tcl runtime engine.
You also assign the program name, creator id and version number for
the program in this step. The output of par is a Palm OS application
.PRC file. See Linking resources with the Palm Tcl runtime.

Step 6. (Optional) Load the created application .PRC file into pose, which is a
Palm OS emulator that runs on multiple platforms including Windows,
Linux and the Mac. This allows you test your application much more
conveniently than loading into a real device. See Testing using the Palm
OS emulator.

Palm Tcl Reference

Step 7. Load the application .PRC file into your Palm OS PDA using the Palm
Desktop Install Tool or equivalent.

The tools and utilities required for these steps are described in this section.

Obtaining a Palm OS Creator ID
Applications for the Palm OS need to have a unique creator id. This is a four-character
code that must be unique amongst all Palm OS applications as it is used internally by
Palm OS for various purposes such as associating databases with specific applications.
If you are creating an application for your own use, you can use a temporary creator id
such as TEST. However, if you want to distribute the application, you should use an
official creator id. You can do this by registering your four-character code at the Palm
creator id registration page at http://www.palm.com/devzone/crid/cridsub.html.

Creating Palm OS resources
Creating Palm OS resources is a two-step process.

• First, a text file – the resource definition file – is created that describes the
various user interface elements. This file has a specific syntax depending on the
utility that will be used to process it.

• Second, a resource compiler processes the resource definition file and converts the
textual description of the application resources into the binary resource format
understood by Palm OS.

There are several tools available to create binary resources for the Palm OS and any of
them should work with Palm Tcl. However, this manual assumes the use of pilrc.

Using this tool is very simple – it is invoked as

pilrc RESOURCEFILENAME

where RESOURCEFILENAME is the name of the resource description file. The program
creates several binary files, each with a .bin extension, corresponding to each Palm OS
resource defined in the resource description file. These files are used as part of the
input to the link step as described in Linking resources with the Palm Tcl runtime.

There are a few things that should be included in the resource definition file in addition
to the user interface resources:

• A resource describing the version of the application should be included
through the pilrc VERSION keyword.

 25

http://www.palm.com/devzone/crid/cridsub.html

Palm Tcl Reference

• A resource of type STRING should be defined for every file that contains a Palm
Tcl script to be included in the application. Moreover, the script to be executed
when the program starts up should be associated with the resource id 9999.

The documentation available with the pilrc download provides all the details
regarding syntax of the resource definition file and pilrc command line options. This
manual does not duplicate that information but the sample resource file in Demo -
resource definition file should provide a useful starting point.

Linking resources with the Palm Tcl runtime
Once the binary resources are created, they need to be linked to the Palm Tcl runtime
system to create an executable Palm OS application, which is itself a resource database
file consisting of code resources (the Palm Tcl runtime system), user interface resources
(from the resource compiler output), and other resources like icon bitmaps and
version strings. The Palm Tcl runtime system is itself shipped as a Palm OS application,
palmTcl.prc, but does not have any resources contained in it except for the runtime
code. There are several programs that may be used to combine the output of the
resource compiler with the runtime system. The one described here is the par utility.

To bind the application resources with the Palm Tcl runtime system, the par utility is
invoked as

par r PRCNAME.prc PROGRAMNAME appl CREATORID palmTcl.prc *.bin

A brief explanation of the command follows. More details on the various options
available with par can be found in its documentation.

r is a function code to par that tells it to create a new resource database file (the
application itself).

PRCNAME is the base name of the file to be created. The extension specified must always
be .prc. The application is created as a file with name PRCNAME.prc. This is the file that
will be registered with the Palm Desktop Install Tool for loading into the PDA.

PROGRAMNAME is the name by which the application will be visible on the PDA.

appl indicates that the resource database being created is actually an executable
application. This is the four-character database type stored with all resource databases
in Palm OS.

CREATORID is the creator id you have registered with Palm Computing (trademark?)

 26

Palm Tcl Reference

palmTcl.prc is the resource database shipped with the Palm Tcl development
environment. It contains the runtime system for Palm Tcl. par will extract the code
resources out of this and store them in PRCNAME.prc.

*.bin refers to the binary resource output files generated by the pilrc program. There
is one file per resource and pilrc constructs each file name based on the resource type
and its resource id. Instead of explicitly listing the files, it is usually easier to use the
wildcard specification. However, care should be taken that there are no extraneous
.bin files left over from previous versions or build attempts.

The file PRCNAME.prc contains the application code and resources. It may be loaded into
a Palm OS based device.

Testing using the Palm OS emulator
Before loading a Palm OS application into a real device, it may optionally be tested on
the Palm OS emulator POSE. This application runs on multiple platforms including
Windows and is available from http://www.palmos.com/dev/tech/tools/emulator. It
includes an almost complete emulation of Palm OS. It is very useful for testing
purposes as it can emulate several different Palm OS devices and also contains several
features that aid in testing. Refer to the documentation that comes with it for details on
how to load and test your application in this environment.

Palm TCL provides access to various emulator features through the emulator
command. These are very useful during the development process, for example to load
scripts during testing without having to rebuild the application. Note that these
commands cannot be used when the application is running on a real Palm device.

Tracing using the Palm Reporter
Another very useful tool for debugging is Palm Reporter. This tool can be used to
display trace messages while running your application inside POSE. The Palm TCL log
command can be used to send execution trace messages to Palm Reporter so that you
can track the execution of your program as it runs.

The Palm Reporter utility can be downloaded from the POSE home page at
http://www.palmos.com/dev/tech/tools/emulator.

Loading an application into a Palm OS PDA
Once the application is built, it may be downloaded into the Palm OS device using the
device’s install utility.

 27

http://www.palmos.com/dev/tech/tools/emulator
http://www.palmos.com/dev/tech/tools/emulator

Palm Tcl Reference

For the Palm series of PDA’s from 3Com or Palm Computing, this utility is the Palm
Install Tool in the Palm Desktop program group in Windows. Start the application
and use the Add button on the first dialog box to register your application for
installation into your PDA. Run hotsync to synchronize your PDA and your
application will be downloaded into the device.

Programming by Example
This chapter introduces the reader to the Palm Tcl development environment
through an example.

This chapter introduces you to Palm Tcl through a simple example program – a
rudimentary address book. It is assumed that the reader has knowledge of Tcl and only
illustrates features that are specific to Palm OS.

Demo - resource definition file

Demo – program

Demo – compiling resources

Demo – linking

 28

Palm Tcl Reference Palm Tcl Reference

This is the official reference for all Tcl commands that are specific to Palm OS.

This section details the Tcl commands that are specific to Palm Tcl and differences
between the standard commands in Palm Tcl and those in the Windows/Unix version
of Tcl.

Palm Tcl compatibility with Tcl 7.6
Palm Tcl is based on Tcl 7.6 but has some significant differences. These differences
arise for several reasons:

Some commands have been removed because they are not relevant to the Palm OS
environment. These commands are – cd exit file flush gets glob load open
puts pwd read seek tell.

Dynamic memory and stack space is extremely limited in Palm OS devices. Some
commands had to be removed because of their memory usage. Some (memory-
optimized) form of these commands may be added in future versions. These
commands are: history.

Some commands have not been implemented to reduce the Palm Tcl code footprint.
These are: case interp package.

The following commands have not been implemented but will be in a future release:
after close eof flush socket vwait.

The following commands have been partially implemented or modified for various
reasons:

• The clock command does not have the scan subcommand but has been
enhanced to add the selectday and selecttime subcommands.

• The source command has been modified to take a Palm OS resource id as a
parameter instead of a file name. The corresponding resource should contain
the script to be evaluated.

• The info command has additional options memstat, palmtcl_version and
palmtcl_patchlevel

The following new commands have been added to support Palm OS features –
clipboard dm form fatal log memstat.

 29

Palm Tcl Reference

Alphabetical Reference
beep
The beep command allows you to play one of the predefined sounds in Palm OS. It
takes the following form:

beep ?BEEPTYPE? Plays the predefined sound indicated by BEEPTYPE.

Table 3

beep ?BEEPTYPE?
Plays one of several different system sounds. The argument BEEPTYPE indicates the
sound to be played and must be one of the following: info, warning, error, startup,
alarm, confirm, or click. If unspecified, the argument defaults to alarm.

clipboard
The clipboard command allows you to retrieve or store text from the Palm OS
clipboard. It takes the following form:

clipboard Retrieves contents of the clipboard.

clipboard ?text? Stores text into the clipboard.

Table 4

clipboard
Without any arguments, the clipboard command returns the current contents of the
clipboard.

clipboard ?text?
If an argument is specified to the clipboard command, it is stored into the clipboard
overwriting its current contents. An empty string is returned.

clock
The clock implements various time and date related functions. It takes one of the
following forms:

clock clicks ?-rate? Return system dependent integer value representing a
high resolution timer.

clock format CLOCK_VALUE
?-format FORMAT_STRING?
?–gmt BOOLEAN?

Returns a formatted string corresponding to a binary
time value.

clock seconds Returns the number of seconds since the beginning of an
unspecified epoch.

 30

Palm Tcl Reference

unspecified epoch.

clock selectday ?-by
MODE? ?-init BINTIME?
?-title TITLE?

Displays a dialog to the user to allow selection of a day

clock selecttime Displays a dialog to the user to allow selection of a time
range

Table 5

Note that the clock scan command available in TCL 7.6 is not implemented in Palm
TCL.

clock clicks ?-rate?
Without the –rate option being specified, the command returns an integer value
representing the number of clock clicks since some undefined instant. The returned
values should be used for relative measurement of intervals. The actual interval
corresponding to the each tick may be obtained by specifying the –rate option. In this
case the command returns the number of clicks in one second. The –rate option is
specific to Palm TCL and is not available in the standard TCL 7.6 distribution.

clock format CLOCK_VALUE ?-format FORMAT_STRING? ?–gmt BOOLEAN?
This command returns an ASCII representation of the binary time represented by
CLOCK_VALUE. The binary time value is generally that returned by the clock seconds
command. An optional formatting string may be specified to control the form and
contents of the returned string. This command is unchanged from the standard TCL
7.6 distribution. Refer to the documentation of TCL 7.6 for details.

clock seconds
Returns the number of seconds since some undefined epoch. This can be used to
measure intervals or passed to the clock format command for converting to human
readable form.

clock selectday ?-by MODE? ?-init BINTIME? ?-title TITLE?
Displays a dialog that allows the user to select a specific date and returns the
corresponding number of seconds since the epoch. Returns an empty string if the user
cancels the dialog. The returned value can be passed to the clock format command
for converting to human readable form.

The -by option is used to specify the mode in which the date selection is allowed: MODE
may have the value day, week or month depending on whether the date selection is by
day, week or month respectively. If the –by option is not specified, it defaults to day.

The –init option allows specification of a specific date to be displayed to the user as
selected. The BINTIME value must be specified as the number of seconds since the
epoch. It may have the special value none to indicate no date should be initially
selected. If the –init option is not specified, it defaults to the current date.

 31

Palm Tcl Reference

The –title option allows specification of a title for the dialog box. This defaults to
“Select a date” if the option is not specified.

clock selecttime ?–start STARTTIME? ?-end ENDTIME?-title TITLE?
Displays a dialog that allows the user to select a time range and returns a list containing
the start and end of the selected time range. The time values are returned in units of
seconds even though the dialog only allows selection on the granularity of a minute.
An empty list is returned if the user cancels the dialog. If the user selects the No Time
button in the dialog, a list of two empty elements is returned.

The –start and –end options allow specification of a default starting and ending time
values to be displayed to the user. If unspecified, they default to the current time. Both
STARTTIME and ENDTIME must be specified in units of seconds. As a convenience, the
values specified for either are modulo a 24 hour clock so that binary date-time values
(seconds since the epoch) may be passed in. This allows return value from clock
seconds to be directly passed to this command.

The –title option allows specification of a title for the dialog box. This defaults to
“Select a time” if the option is not specified.

dm
The dm command creates and manipulates Palm OS database resources. It takes one of
the following forms:

dm create NAME CREATOR
TYPE ?-rsrc?

Creates a database of the given type, name and creator id.

dm opendb NAME ?options? Opens the database with the given name and returns a
handle to it. This is denoted by DBHANDLE below and is
the name of a Tcl command that may be used to invoke
operations on the database.

dm exists NAME Checks whether a database of the given name exists.

dm list ?-all? ?-name
NAME? ?-type TYPE? ?-
creator CREATOR?

Returns a list of databases in the system with the given
characteristics. Not implemented yet.

dm delete NAME Deletes the database of the given name from the device.

DBHANDLE close Closes the database referenced by DBHANDLE.

DBHANDLE get RECORDINDEX
?VARNAME?

Retrieves the value of a database record.

DBHANDLE set RECORDINDEX
?-var? VALUE

Sets the value of a database record.

 32

Palm Tcl Reference

DBHANDLE recinfo
?options?

Retrieves miscellaneous information associated with a
database record.

DBHANDLE count Returns number of records in the database.

Table 6

dm create NAME CREATOR TYPE ?-rsrc?
Creates a database with the given name and type. NAME is the name of the name to
be associated with the database. CREATOR and TYPE specify the creator id and
database type. The parameters to the command are shown in Table 7.

NAME The name to be associated with the database.

CREATOR The creator id to associate with the database.

TYPE The type of the database.

-rsrc Not implemented yet.

Table 7

If a database of that name already exists, the command raises a Tcl error exception.
Callers should first check for the existence of the database using the dm exists NAME
command.

The command returns an empty string.

dm opendb NAME ?options?
Opens the database with the given name and returns a handle to it. The database must
exist and must not be already open else a Tcl error exception will be raised.

The options that may be specified with the command are shown in Table 8.

-ro Specifies that the database should be opened
in read-only mode. Any attempts to write to
the database will result in a Tcl error
exception.

-rw Specifies that the database should be opened
in read-write mode. Records may be read and
written to the database. This is the default.

-exclusive Specifies that the database should be locked.
Attempts by other applications to open the
database will fail until the database is closed.

-ignoresecret If specified, when reading the database,
records marked as secret are ignored when

 33

Palm Tcl Reference

records marked as secret are ignored when
iterating through the database.

-var VARNAME Specifies a variable to be linked to the
database. The database can then be accessed
through this variable using array syntax.

-fields Not implemented yet.

Table 8

The returned handle (denoted by DBHANDLE in the documentation) is also the name of a
Tcl command that may be used to read and write the database. When the form is no
longer required, it should be closed by invoking the command

DBHANDLE close

Deleting the corresponding Tcl command DBHANDLE will also have the same effect.

If the –var VARNAME option is specified, a global variable VARNAME is associated with the
open database. The records of the database may then be directly accessed using the
standard TCL syntax for arrays with the array index corresponding to the index of the
record in the database. As a special case, the index end may be used to add a record to
the end of the database.

dm exists NAME
Returns 1 if a database with the given name exists. Otherwise, returns 0.

dm list ?-all? ?-name NAME? ?-type TYPE? ?-creator CREATOR?
Not implemented yet.

dm delete NAME
Deletes the database with the given name. Note that once deleted, a database cannot
be deleted using any of the Palm utilities.

DBHANDLE close
Closes the database associated with DBHANDLE. Returns an empty string.

DBHANDLE get RECORDINDEX ?VARNAME?
Retrieves the record at index RECORDINDEX in the database referenced by DBHANDLE.

If VARNAME is not specified, returns the record if found. If the record is deleted or
RECORDINDEX is greater than the number of records in the database, returns an empty
string. If an empty string is returned, caller should use the

DBHANDLE recinfo RECORDINDEX -state

 34

Palm Tcl Reference

command to check if the record is valid but empty, if it is deleted, or the record index
in too large.

If VARNAME is specified, the command sets the variable of that name to the value of the
record and returns 1. Otherwise, the command returns 0 and sets the variable to be
deleted or eof depending on whether the record has been deleted or RECORDINDEX is
out of range.

DBHANDLE set RECORDINDEX ?-var? VALUE
Sets the value of the record at index RECORDINDEX in the database referenced by
DBHANDLE. If RECORDINDEX is greater than the number of records currently in the
database or is the string end, a new record is appended to the database.

If –var is not specified, the database record is set to VALUE. If the –var option is
specified, then VALUE is treated as the name of a variable in the current context that
contains the actual value to use.

The command returns the index of the record modified or created. This is useful when
appending a record to the end of the database. The returned index can be used to get
the unique id of the record (through the DBHANDLE recinfo command) so that the
record can be located after sorting the database.

DBHANDLE delete RECORDINDEX?
Deletes the record at index RECORDINDEX in the database referenced by DBHANDLE. In
the current version of Palm Tcl, this is a complete removal from the database. It is not
merely marked as deleted.

DBHANDLE count
Returns the number of records in the database.

DBHANDLE sort ?options?
Sorts the records in the database based on the specified options. The possible options
are shown in Table 9.

-command TCLPROCNAME Specifies a TCL procedure to be invoked to compare
two records. Not implemented

-decreasing Records are sorted in decreasing order.

-increasing Records are sorted in increasing order. This is the
default.

-index FIELDPOS Records are compared using the field at position
FIELDPOS in the record. Defaults to 0

-integer Specifies that records are to be compared based on
integer comparison of the fields

 35

Palm Tcl Reference

integer comparison of the fields

-method ALGORITHM Defines the algorithm used for sorting. Valid values
are qsort and isort

-strcmp Specifies that records are to be compared based on
case-sensitive string comparison of the fields

-stricmp Specifies that records are to be compared based on
case-insensitive string comparison of the fields. This is
the default if –command, -strcmp and –integer are
not specified.

Table 9 Database sorting options

When sorting the database, records are compared by either calling the procedure
specified with the –command option or by directly comparing fields at position FIELDPOS
indicated through the -index option. These two options are mutually exclusive.

The –command option allows specification of a TCL procedure that should be invoked
to compare two records. The procedure is passed three arguments – the handle to the
database, the first record (as a list) and the second record. The procedure should return
–1, 0 or 1 depending on whether the first record should be considered smaller, equal or
greater than the second record.

When the –index option is present, the -integer, -strcmp and –stricmp options may
be used to control the mode of the comparison. By default, –stricmp is presumed if
nont of these options is present.

The –increasing and –decreasing options specify the order in which records are to
be sorted. If multiple such options are specified, the last one takes effect.

The sorting algorithm to be used can be specified through the –method option.
Specifying qsort as the argument for the options causes the Quicksort algorithm to be
used. Specifying isort as the argument causes the Insertion sort algorithm to be used.
The insertion sort algorithm is quicker when the database is mostly sorted in the
correct order, for example when a new record is added to an existing sorted database.
In all other cases, the Quicksort algorithm is considerably faster and should be used.
Specifying multiple –method options causes the last one to take effect.

DBHANDLE recinfo?option?
This function retrieves various information about a record. The various options are
shown in Table 10.

getid RECORDINDEX Returns a unique value that identifies the record at
position RECINDEX in the database. This can be used
with the getindex option to locate the record after

 36

Palm Tcl Reference

resorting.

getindex RECORDID Returns the position (index) of the record whose unique
id is RECORDID.

Table 10 DBHANDLE recinfo command options

emulator
The emulator allows access to various Palm OS Emulator features. This is very useful
during development, for example, to edit and modify scripts without having to rebuild
the application and install it.

emulator Returns 1 if the program is running in the Palm OS
emulator, 0 other wise.

emulator log
MESSAGE_STRING

Writes MESSAGE_STRING to the emulator’s tracing
facility.

emulator source FILENAME Reads a file from the host system and does an eval on
the contents.

Table 11 emulator command options

emulator
Without any additional arguments, this command returns 1 if the application is running
under the POSE and 0 if running on a real device. The command should be used before
using any of the other emulator subcommands.

emulator log MESSAGE_STRING
This command writes trace messages to the Palm Reporter tracing utility. It is only
effective when running the application under POSE.

The command always returns the empty string.

emulator source FILENAME
This command reads a file from the host system that the emulator is running on and
does an eval on the contents. Due to the memory constraints on the Palm OS, the file
specified must not be more than 16000 bytes in size.

The primary purpose of the command is to be able to dynamically load script files
from the host system during the development/test process. This command behaves
similar to the source command in the standard TCL 7.6 distribution. Refer to the
documentation of TCL 7.6 for details.

 37

Palm Tcl Reference

event
The event command allows programmatic generation of events defined in Event
Reference. It may take one of the following forms:

event key KEYCODE Inserts an event of type key into the event queue

event menu MENUID Inserts an event of type menu into the event queue

event system SYSTEMCODE Inserts an event of type system into the event queue

Table 12

event key KEYCODE
Inserts an event of type key into the event queue. The effect is as if the user had
entered the KEYCODE ASCII character.

event menu MENUID
Inserts an event of type menu into the event queue. The effect is as if the user had
selected the menu item corresponding to resource id MENUID.

event system SYSTEMCODE
Inserts an event of type system into the event queue. SYSTEMCODE must be one of the
strings listed in Table 26 Event strings for system events.

form
The form command creates and manipulates Palm OS form resources. It may take one
of the following forms3

form ids Lists the resource ids of all form resources currently
loaded into the application

form handles Lists the handles of all loaded form resources

form load RESID ?options? Loads the form whose resource id is RESID into the
application and returns a handle (FORMHANDLE) to it
which is a Tcl command that may be used to
manipulate the form.

FORMHANDLE unload Closes the form if visible, and unloads it from
memory.

FORMHANDLE configure
?options?

Configures various options associated with an loaded
form.

3 No pun intended.

 38

Palm Tcl Reference

FORMHANDLE cget ?options? Retrieves various configuration options associated
with an loaded form.

FORMHANDLE display ?-popup
BOOLEAN?

Makes the form visible if it is not already so and raises
it above other forms that might be open.

FORMHANDLE get RESID
?VARNAME?

Retrieves the value of the form element whose
resource id is RESID.

FORMHANDLE set RESID
?-var? VALUE

Sets the value of the form element whose resource id
is RESID.

FORMHANDLE getsel RESID
?VARNAME?

Retrieves the current selection in the form element
whose resource id is RESID.

FORMHANDLE setsel RESID
STARTPOS ENDPOS

Sets the selection in the form element with resource id
RESID to the character range whose positions are
given by STARTPOS and ENDPOS.

FORMHANDLE focus ?RESID? Retrieves or sets the current focus in a form.

FORMHANDLE redraw ?-force? Redraws all or part of a displayed form.

FORMHANDLE itemconfig
RESID ?options?

Sets various options for a form element. The options
are dependent on the type of the form element.

FORMHANDLE itemcget RESID
?options?

Retrieves the configuration options for a form
element.

Table 13

form ids
Returns a list of the resource ids of all forms currently loaded into the application.

form handles
This command returns a list of handles to currently loaded forms. The handles are
those returned by the form load command when the forms are loaded. The handles
are returned in an arbitrary order.

form load RESID ?options?
Loads a form with the resource id RESID into the application and returns a handle to it.

The ?options? argument for the command may include the following options:

-command TCLSCRIPT
script

Specifies a script to be invoked for every event generated while
the form is active.

-menucmd TCLSCRIPT
script

Specifies a script to be evaluated when a menu item is selected.

 39

Palm Tcl Reference

script

Table 14

The form must not be already loaded; otherwise, a Tcl error exception is raised.

The returned handle (denoted by FORMHANDLE in the documentation) is the name of a
Tcl command that may be used to manipulate the form and the user interface elements
contained in it. When the form is no longer required, it should be removed from
memory by invoking the FORMHANDLE unload command. Deleting the Tcl command
corresponding to the form will also have the same effect.

If the –command option is specified, script is evaluated for all events whenever the
form is active. This evaluation is done in the global context after undergoing the
keyword substitutions defined in Event Keyword Substitution.

The –menucmd option is similar except that script is evaluated only when the user
selects an item from the menu associated with the form. The most useful keyword
substitutions in this context are %S, which gets substituted with the resource id of the
selected menu item, and %W, which gets substituted with the handle of the active form.

FORMHANDLE unload
Closes the form referenced by FORMHANDLE, removing it from the display and unloading
it from memory. If this is the topmost form on the display, the next form in the
stacking order is redrawn.

This command also deletes the Tcl command referred to by FORMHANDLE, which
become invalid after this command returns and should not be referenced.

FORMHANDLE unload always returns an empty string.

FORMHANDLE configure ?options?
Not implemented.

FORMHANDLE cget ?options?
Retrieves the value of an attribute or configuration parameter associated with a loaded
form. The keywords that may be specified in ?options? and the corresponding values
returned are:

-resid The resource id of the form referenced by
FORMHANDLE.

-geometry Not implemented

Table 15

 40

Palm Tcl Reference

FORMHANDLE display ?-popup BOOLEAN?
Displays the form referenced by FORMHANDLE and raises it to the top of the screen. The
form is also made active and receives all input including menu events. This command
must be executed after a form is loaded to make it is visible on the screen.

The –popup takes a Boolean argument that indicates whether the currently active form
should be closed before this form is displayed. If the BOOLEAN argument is 0, false, or
no, the topmost form is closed before this form is displayed. This is the default when
the -popup option is not specified. If the BOOLEAN argument is 1, true, or yes, this form
is overlaid on top of the currently active form, which is left open but made inactive.

The command always returns the empty string.

FORMHANDLE get RESID ?VARNAME?
Retrieves the current value stored in the form element whose resource id is RESID. If
?VARNAME? is specified, the value is also stored in a variable of that name in the current
context. The variable is created if it does not already exist.

The value returned depends on the type of form element as shown in the table below.
Note that not all element types support the get operation. Invoking the operation on
any element whose type is not listed in the table will generate a Tcl error exception.

Check box 1 if the pushbutton is currently selected, 0 otherwise

Fields The current contents of the field as a string.

Labels The currently displayed string for the label.

Lists A Tcl formatted list containing the list items

Push button 1 if the pushbutton is currently selected, 0 otherwise

Scroll bar A list of 4 integers corresponding to the current position of the
scroll bar, the minimum value, the maximum value and the scrollbar
height. Needs elabora ion. t

Title The currently displayed string as the form title

Table 16

FORMHANDLE set RESID ?-var? VALUE
Sets the value of the form element whose resource id is RESID to VALUE. If the –var
option is specified, then VALUE is treated as the name of a variable in the current
context that contains the actual value to use.

The command always returns an empty string.

 41

Palm Tcl Reference

The allowed values for the various form element types are shown in the table below.
Note that form element types not shown in the table do not support this operation.
Invoking it with the wrong value type or on any form element type not listed below
will result in a Tcl error exception.

Check box Any Tcl Boolean value – true, yes and 1 will show the checkbox as
being ticked and false, no and 0 will show it clear.

Field Any string that is shorter than the maximum field length defined for
the field through the MAXCHARS attribute in the resource definition
file.

Label Any string that is shorter than the label defined in the resource
definition file. Not implemented yet. Currently raises a Tcl exception.

List A Tcl formatted list containing the list items to be shown in the list
box.

Push button Any Tcl Boolean value – true, yes and 1 will show the pushbutton
as being selected and false, no and 0 will show it clear.

Scroll bar A list of 4 integers corresponding to the current position of the
scrollbar, the minimum value, the maximum value and the scrollbar
height. This is the same format as the value returned by the
FORMHANDLE get RESID command.

Title Any string. Not yet implemented. Currently raises a Tcl exception.

Table 17

FORMHANDLE getsel RESID ?VARNAME?
Retrieves the current selection in the form element with resource id RESID.

If VARNAME is not specified, returns the selection text. If there is no selection in the form
element or if the form element does not support selection, the command returns an
empty string.

If VARNAME is specified, and the form element has selected text, the selection is stored in
a variable with name VARNAME in the current context. The variable will be created if it
does not exist. For form fields that are lists, the command returns the starting index of
the selection. For form elements that are fields, the returned value is a list the first
element of which is the offset of the first character of the selection in the field value
and the second element is the offset of the character following the last character in the
selection. For lists, the returned value is the index of the selected item in the list. For
both form element types, if nothing is selected, the command returns an empty string
and VARNAME is not affected (and will not be created if it does not exist).

 42

Palm Tcl Reference

FORMHANDLE setsel RESID STARTPOS ENDPOS
Not yet implemented.

FORMHANDLE focus ?RESID?
Gets or sets the current focus in the form.

If RESID is not specified, returns the resource id of the form element that has the focus.
If no form element has the focus, the string none is returned.

If RESID is specified, it must be the resource id of the form element that is to receive
the focus. As a special case, RESID may be specified as none to remove the focus from
all form elements. The command returns 1 if the focus change was successful, and 0
otherwise, for example, if the form element is not of a type that can receive the focus.

FORMHANDLE redraw ?-force?
Redraws a displayed form. Normally, the display update is optimized to batch changes
and to occur when the system is idle. In some cases, for example, when repeating
buttons are used, it may necessary to update the display right away using this
command.

If the –force option is not specified, the command will only redraw those form
elements whose data has been modified. If the -force option is specified, the entire
form will be redrawn.

FORMHANDLE itemconfig RESID ?options?
Sets configuration options and attributes of the form element with resource id RESID.
The allowed options and values, if any, for each form element type are shown below.
Any attempt to set an option that is not supported or has a bad value will result in a Tcl
error.

The command always returns an empty string.

-colhide Table Hides a column in the table

-colshow Table Makes a table column visible

-coltypes Table Defines the column types for a table

-command Button, check box, list, push
button, selector trigger,
repeating button,table

Script to be evaluated when the form
element is selected

-datacmd Table Script to be invoked as a callback to save or
load data into a table row.

-dispcmd List Script to call to retrieve the text to draw for
an owner draw list box. Not implemented.

 43

Palm Tcl Reference

-downscroll Button, repeating button Resource id of a form element of type table
that is to be scrolled down when this
button is pressed

-fixsize Table Makes all rows in the table fixed height so
that rows will not expand in height as data
is entered

-label Button, check box, push
button, selector trigger,
popup trigger, repeating
button

Label to be displayed for the form element

-num_items Table Total number of items in table

-rowhide Table Hides a tablerow Not implemented

-rowshow Table Makes a table row visible Not implemented

-scroll Scrollbar Resource id of a form element of type field
that is to be associated with the scroll bar

-top Table The logical table index associated with the
topmost row of the table

-upscroll Button, repeating button Resource id of a form element of type table
that is to be scrolled up when this button is
pressed

-usable All Hides or shows the form element so that it
is no longer visible on the screen. Not
implemented.

Table 18

The –command option takes an argument that is a script to evaluated when the system
generates an event indicating that the corresponding form element is selected. For
buttons, push buttons and popup triggers, this happens when the form element is
tapped. For lists, selecting a list item triggers the event is generated when the user
selects a list item. For check boxes, the event is generated when the user checks or
clears the check box. The associated script is evaluated in the global context after
undergoing the keyword substitutions defined in Event Keyword Substitution. The
most useful keyword substitutions in this context are %S, which gets substituted with
the resource id of the form element, and %W, which gets substituted with the handle of
the active form.

The –datacmd option takes an argument that is a script to evaluated to either retrieve or
save data in a table row. Before being invoked, four additional arguments are appended

 44

Palm Tcl Reference

to the script. The first argument is a function code. The second argument is the
command associated with the form. The third appended argument is the resource id of
the table itself. The fourth argument is the record number. Note that this option is
mutually exclusive with the –dbattach option.

The –dbattach option (not implemented) allows direct table-based display and editing of a
Palm Tcl database with no additional programming required. The option takes an
argument that is a list, the first element of which is the name of the database, the
second element is either -ro or -rw to indicate the database should be treated as
readonly or read-write The remaining elements of the list correspond to column in the
table and indicate which fields of a database record should be displayed in the column.
Note that this option is mutually exclusive with the –datacmd option.

The function codes appended as the first argument to the script are shown in Table 19

get The script should return a list each
element of which corresponds to a
column in the table

save The indicated cell has been modified. The
column number of the cell is passed as an
additional argument

Table 19

The –scroll option is only applicable to scroll bar form elements. The associated
argument must be the resource id of a field that is to be controlled through the
scrollbar. Configuring a scrollbar using this option lets Palm Tcl take care of the
machinery required to keep a field and an associated scrollbar updated when either one
is changed.

The –upscroll and –downscroll options are only applicable to button and repeating
button form elements. The associated argument must be the resource id of a table that
is to be controlled through the button. Configuring a pair of buttons with these
options lets Palm Tcl take care of the machinery required to keep a table and the
associated buttons updated when either one is changed.

The –label option is applicable to button, check box, push button, selector trigger,
and repeating button elements. The associated argument is the text to be displayed as
the label for the element.

FORMHANDLE itemcget RESID ?options?
Retrieves the configuration options associated with a particular form element. Only the
options shown in Table 20 are valid.

 45

Palm Tcl Reference

-inspos Field Returns the current insert position in the
field.

-num_items Table Total number of items in table

-top Table The logical table index associated with the
topmost row of the table

-type All form elements Returns the type of the form element
which may be one of field, list, label,
title, scroll, check, push, table,
button, repbutton, seltrigger,
poptrigger, poplist corresponding to
the various element types.

Table 20 FORMHANDLE itemcget options

FORMHANDLE tget RESID ?RECINDEX COLUMN? …
Gets the values of cells in the table whose resource id is RESID. The RECINDEX COLUMN
pairs indicate the locations of the cells whose values are to be retrieved. These are
returned as a single list. The type of each element in the list is dependent on the type of
that cell. Text cell types return a string value corresponding to the contents of the cell.
Cells of type checkbox return 1 or 0 depending on whether the checkbox is selected or
not.

FORMHANDLE tset RESID ?RECINDEX COLUMN VALUE? …
Sets the value of cells in the table whose resource id is RESID. The type and valid values
of VALUE is dependent on the type of the corresponding table cell. For text cells, any
string may be specified. For cells of type checkbox, the specified value must be a
Boolean. Note that multiple RECINDEX COLUMN VALUE triples may be specified to set the
values of multiple cells.

info
The Tcl command info, which returns various runtime information has been enhanced
to take the additional options shown in

memstat Returns a string showing memory usage statistics

palmtcl_version Returns the version of Palm Tcl

palmtcl_patchlevel Returns the version of Palm Tcl including patch information

Table 21

palm
The palm command provides access to miscellaneous Palm OS system routines.

 46

Palm Tcl Reference

palm launch Invokes the Palm OS application launcher

palm keyboard Displays a popup keyboard

palm graffitihelp Displays help screens for graffiti strokes

Table 22

palm launch
This command exits the application and invokes the system application launcher.

palm keyboard
This command displays the Palm OS popup keyboard. The user can tap the displayed
keys to enter data instead of using. Following standard Palm OS convention, this
command should normally be bound to an item in the Edit menu.

palm graffitihelp
This command brings up the standard Palm OS help screens for graffiti input. This
command should be bound to an item in the Edit menu.

source
The source command evaluates a script stored in a Palm OS resource. The command
behaves similar to the source command in the standard TCL 7.6 distribution except
that the script to be run is identified by a Palm resource id instead of a file name.

source ?RES_ID? Reads a script stored in the Palm OS resource identified by
RES_ID and evaluates it.

Table 23

Event Reference
Event Keyword Substitution
Palm TCL allows an application to register callback scripts that are invoked for specific
events such as graffiti (character) input, selection events and hardware buttons. There
are four event types:

key Events of this type are generated when printable (generally ASCII)
characters are entered through graffiti input or the keyboard display

system Events of this type are used for system events such as pressing one of the
buttons on the Palm device as well as virtual command keys entered using
graffiti.

select This type of event is generated when the user selects certain types of form
elements like check boxes.

 47

Palm Tcl Reference

elements like check boxes.

menu Events of this type are generated when the user makes a menu selection.

Table 24

If callback scripts are associated with a form or form element, they are invoked after
undergoing certain substitutions for % placeholders that are substituted with
information specific to the event that caused the script to be invoked. These
placeholders are replaced with the substitutions shown in Table 25 Event %
substitution. Note that placeholders that have no valid substitutions for a particular
event are replaced with the ?? sequence.

 key events system events select events menu events

%A Ascii character See Table 26 ?? ??

%E key system select menu

%N Integer
corresponding
to input
character

Integer
corresponding
to input
command
character

?? ??

%R Resource id of form or ?? if no form active

%S Resource id of form element that
currently has the focus

Resource id of
form element
being selected

Resource id of
menu item being
selected

%T An integer corresponding to underlying Palm OS event type

%W The TCL handle for the form or ?? if no form active. The TCL handle is
also the TCL command for invoking operations on the form.

%x ?? ?? Only valid for
tables. Replaced
with the column
number of the
selected cell.

??

%y ?? ?? Only valid for
tables. Replaced
with the row
number of the
selected cell.

??

Table 25 Event % substitution

 48

Palm Tcl Reference

In the case of events of type system, the actual event is described by one of the strings
shown in Table 26 Event strings for system events

alarm Alarm is about to be generated

autoOff Inactivity timer has triggered

battery Battery is running low

calc User selected the Calc silk screened button on device

find User selected the Find silk screened button on device

hard1 User pressed the first hardware button on device (with the Date Book
icon)

hard2 User pressed the second hardware button on device (with the Address
Book icon)

hard3 User pressed the third hardware button on device (with the To Do List
icon)

hard4 User pressed the fourth hardware button on device (with the Memo
icon)

hotsync User invoked Hotsync function through the device cradle

launch User selected the Applications silk screened button on device

left Move left graffiti character

menu User selected the Menu silk screened button on device

next Next field graffiti character

pageDn User pressed page down hardware button

pageUp User pressed page up hardware button

power Power button has been pressed

prev Previous field graffiti character

right Move right graffiti character

Table 26 Event strings for system events

 49

 Appendices

Appendix A - Version History
Describes the changes in each version of Palm TCL

Version 0.1

• Initial release

Version 0.2

• Added the memstat command

• Added emulator command

• Added clipboard command

• Added clock command including Palm TCL specific features

• Added –label option to the FORMHANDLE itemconfig command

• Added the FORMHANDLE redraw command

• Added support for repeating buttons, popup triggers and selector triggers

• Added dm exists command

• Added palm launch, palm keyboard and palm graffitihelp commands

• Added –command option to form load

• Added hooking for additional events such as hardware buttons and graffiti
shortcuts

• Format for storing records in databases has changed. Incompatibility with
version 0.1 databases

• Added regexp and regsub commands (identical to TCL 7.6)

• Added the event command for generating events

• Binaries are built using Palm OS SDK 4.0 and prc-tools 2.1pre3

Version 0.3

Palm Tcl Reference

• Added support for basic tables with scrolling

• Integrated apnlib module into and removed dependency on patched Palm OS
header files

• Added memstat, palmtcl_version and palmtcl_patchlevel options to the
info command

• Removed the memstat command (now part of the info)

Version 0.4

• Added –fixsize option to FORMHANDLE itemconfig command to make table
rows non-expandable

• Added –var option to dm opendb command for accessing databases using array
syntax

• Added –command option for table form elements

• Added the –inspos option to FORMHANDLE itemconfig and FORMHANDLE
itemcget commands to set and get the insertion position for field elements

• Added the FORMHANDLE itemcget command option –type to retrieve the type
of a form element

• Added the FORMHANDLE itemcget command options -top and –num_items to
get the top row index and number of items associated with a table

• Added DBHANDLE sort command to sort databases

• Added DBHANDLE count command to return number of records in a database

• Added DBHANDLE delete command to delete a record in a database

• Added dm delete command to delete a database

• Added DBHANDLE recinfo command to return position and unique id of a
record

• Added %x and %y event substitution specifiers for table events

• Changed DBHANDLE set command to return index of updated record.
Incompatible change

 51

Palm Tcl Reference

• The FORMHANDLE getsel return value sematics have changed for field element
types. Incompatible change.

 52

Index

Index
appl commands. See dm

database type, 26 unsupported features, 20
application database

creating PRC file, 26 assigning creator id, 33
loading into PDA, 27 assigning name, 33

beep command, 30 assigning type, 33
building applications commands. See dm

creating resources, 25 creating, 33
obtaining a creator id, 25 open modes, 33
step-by-step process, 24 opening, 33

button database creator id
definition, 11 assigning, 20
handling button taps, 12 definition, 20

BUTTON database handle
pilrc resource keyword, 11 creating, 33

buttons database type
assigning, 20 associating scripts, 12

use for scrolling tables, 45 definition, 20
check box databases

accessing as arrays, 21 retrieving value of, 41
check boxes check existence, 34

associating scripts, 13 checking existence, 21
definition, 12 closing, 22, 34
getting state, 13 counting records, 35
grouping, 13 creating, 21
handling taps, 13 definition, 20
labels, 13, 45 deleting, 34
setting state, 13 enumerating, 21
setting value of, 42 exclusive mode, 21

CHECKBOX handle, 21
pilrc resource keyword, 13 ignoring secret records, 33, 34

clipboard opening, 21
using, 16 read-only mode, 21

clipboard command, 30 sorting, 22. See sorting databases
retrieving text, 30 -datacmd
storing text, 30 FORMHANDLE itemconfig option, 44

clock command date. See time
definition, 30 user input, 18

-command user input dialog, 31
associating scripts with a form, 40 DBHANDLE. See database handle
form load, 39 displaying forms, 41
FORMHANDLE itemconfig option, 44 dm command

creator id DBHANDLE close, 34
assigning to application, 26 DBHANDLE delete, 35

data DBHANDLE get, 34
sharing. See clipboard DBHANDLE recinfo, 36

Data Manager, 20 DBHANDLE set, 35

 53

Index

DBHANDLE sort, 35 form
definition, 32 closing, 40
dm count, 35 defining in resource files, 6
dm create, 33 definition, 6
dm delete, 34 displaying, 41
dm exists, 34 loading, 6, 39
dm opendb, 33 popup, 41
-exclusive mode, 33 unloading, 40
-ignoresecret mode, 33, 34 FORM
opendb options, 33 pilrc resource keyword, 6
-ro readonly mode, 33 form command, 38
-rw readwrite mode, 33 form handles, 39

emulation. See POSE form ids, 39
emulator form load, 39

detecting, 37 FORMHANDLE cget, 40
source subcommand, 37 FORMHANDLE display, 41
sourcing scripts, 37 FORMHANDLE focus, 43

emulator command FORMHANDLE get, 41
definition, 37 FORMHANDLE getsel, 42

event FORMHANDLE itemcget, 45
generating, 38 FORMHANDLE itemconfig. See form

command event command, 38
event keyword substitution FORMHANDLE redraw, 43

%S, 44 FORMHANDLE set, 41
FORMHANDLE tget command, 46 %W, 44
FORMHANDLE tset command, 46 Event keyword substitution

%S, 7, 40 FORMHANDLE unload, 40
%W, 40 form element

events, 19 configuring. See form command
generating key events, 38 getting configuration, 45
generating menu events, 38 hiding, 44
generating system events, 38 redrawing, 43

exiting retrieving type of, 46
application exit, 47 setting focus, 43

field setting value of, 41
retrieving value of, 41 showing, 44

FIELD form handle
pilrc resource keyword, 8 creating, 39

fields deleting, 40
definition, 8 retrieving geometry, 40
editable, 9 retrieving option values, 40
maximum size, 9 retrieving resource id, 40
noneditable, 9 form selection. See selection
pilrc attributes, 9 form titles
scrolling, 9 definition, 8
setting font, 9 FORMHANDLE. See form command
setting value of, 42 graffiti
single versus multiple lines, 9 display help, 47
specifying text alignment, 9 graffitihelp
underlining, 9 palm command function, 47

focus GROUP
getting, 43 pilrc attribute keyword, 13
removing, 43 group number, 13
setting, 43 help

 54

Index

display graffiti help, 47 evaluating scripts, 40
hotsync, 28 keyword substitution, 40
insert position MENUITEM

retrieving, 46 pilrc resource keyword, 7
Insertion sort, 36 palm command
installing Palm Tcl applications, 28 definition, 46
keyboard Palm Install Tool, 28

input, 47 Palm OS emulator. See emulator. See POSE
palm command function, 47 Palm OS Emulator
popup, 47 commands for accessing, 37

label Palm Reporter
setting button labels, 45 downloading, 27
setting checkbox labels, 45 tracing tool, 27

LABEL Palm Tcl
pilrc resource keyword, 8 compatibility with Tcl, 29

labels new commands, 29
changing at runtime, 8 palmTcl.prc, 27
definition, 8 par resource utility
emulating using text fields, 8 downloading, 4
getting value of, 8 par utility
retrieving value of, 41 invoking, 26
setting value of, 42 pilrc

launch invoking, 25
palm command function, 47 pilrc resource compiler

linking downloading, 4
using par, 26 popup trigger

LIST definition, 14
pilrc resource keyword, 10 popup triggers

lists labels, 45
POPUPLIST definition, 10

pilrc resource keyword, 14 modifying, 10
POPUPTRIGGER retrieving value, 10

pilrc resource keyword, 14 retrieving value of, 41
POSE scrolling, 11

setting value of, 42 downloading, 27
emulator tool, 27 static, 10

PULLDOWN load, 39
pilrc resource keyword, 7 log command

push buttons definition, 37
associating scripts, 13 menu
definition, 12 associating with forms, 7
getting state, 13 defining in resource files, 7
grouping, 13 defining submenus, 7
handling taps, 13 definition, 7
labels, 13, 45 generating events, 38
retrieving value of, 41 sharing between forms, 7
setting state, 13 MENU
setting value of, 42 pilrc resource keyword, 7

PUSHBUTTON menu items
pilrc resource keyword, 13 associating scripts, 7

Quicksort, 36 defining in resource files, 7
radio buttons. See push buttons,grouping handling selection, 7
records -menucmd, 39

creating, 35 associating script, 40

 55

Index

definition, 20 pilrc resource keyword, 11
deleting, 22, 35 scrolling
reading, 21 fields, 11
retrieve record index, 36 selection
retrieve unique id, 36 getting value of, 42
retrieving, 34 selector trigger
secret records, 33, 34 associating scripts, 13
sorting. See sorting records definition, 13
unique identifier, 20 handling taps, 13
updating, 35 SELECTORTRIGGER
writing, 21 pilrc resource keyword, 13

repeating button sharing data
definition, 11 using the clipboard, 16
handling button taps, 12 sorting databases, 35

repeating buttons comparison function, 36
associating scripts, 12 sorting records, 35
use for scrolling tables, 45 choosing sort algorithm, 36

Reporter. See Palm Reporter sort options, 35
resource sound

database, 5 playing, 18. See beep command
definition, 5 sounds, 18
definition file, 5 source command

resource compiler, 25 definition, 47
resource definition file, 5 startup script
resource id linking to application, 26

definition, 5 resource id, 26
startup script, 6 STRING

resource ids pilrc resource keyword, 26
reserved, 6 submenus

resource type defining in resource files, 7
definition, 5 system application launcher

resources invoking, 47
binary form, 25 system sounda, 30

runtime system table
retrieving cell values, 46 for Palm TCL, 26
setting cell values, 46 linking with, 26

script TABLE
linking with application, 26 pilrc resource keyword, 14
startup, 26 tables

scripts pilrc attributes, 14
reading, 47 retrieve top row index, 46

-scroll specifying column width, 14
asso FORMHANDLE itemconfig option, 45 specifying columns, 14

scroll bar specifying rows, 15
associating with form elements, 45 Tcl 7.6
retrieving value of, 41 Palm Tcl differences, 29

scroll bars text field. See field
tget command option, 46 associating with fields, 11

controlling size and position, 11 time
definition, 11 converting to ascii, 31
retrieving size and position, 11 formatting, 31
setting value of, 42 manipulation, 30
state, 11 measuring intervals, 31

SCROLLBAR retrieving, 31

 56

Index

user input, 18
user input dialog, 32

Time
binary, 31
measuring intervals, 31

TITLE
pilrc resource keyword, 8

titles

retrieving value of, 41
setting value of, 42

tracing execution. See Palm Reporter
log command, 37

tset command option, 46
VERSION

pilrc resource keyword, 25

 57

References

References

1 Palm OS Programming for Dummies, Liz O’Hara and John Schettino, IDG Books.

2 Palm Programming, The Developer’s Guide, Neil Rhodes and Julie McKeehan, O’Reilly & Associates, Inc.

3 Palm OS Programming Bible, Lonnon R. Foster, IDG Books.

4 Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley.

5 Palm OS Programmers’ Companion, Palm Computing.

6 Palm OS SDK Reference, Palm Computing.

 58

	About Palm OS
	About Tcl
	Why use Palm Tcl
	When not to use Palm Tcl

	Futures and limitations
	About this manual
	Other Reading
	Reading about Palm OS
	Reading about Tcl

	Credits
	The Tcl language
	The prc-tools C development tools
	The PilRC resource compiler
	The par resource database utility
	Toucan – the Palm TCL Integrated Development Envi

	User Interface Elements
	Resources
	Forms
	Menus
	Titles
	Labels
	Text fields
	Lists
	Scroll bars
	Buttons and repeating buttons
	Check boxes and push buttons
	Selector triggers
	Popup triggers
	Tables
	Graffiti Shift Indicator
	Clipboard and Selections
	Handling user input
	Time and Date Selectors
	Playing Sounds

	Palm OS Events
	Event handling
	Event generation

	Data Manager
	Data Manager Concepts
	Database creator ID
	Database type
	Database records

	Working with databases

	System functions
	Launching applications
	Palm OS feature support

	Conduits
	The Palm Tcl build process
	Obtaining a Palm OS Creator ID
	Creating Palm OS resources
	Linking resources with the Palm Tcl runtime
	Testing using the Palm OS emulator
	Tracing using the Palm Reporter
	Loading an application into a Palm OS PDA
	Demo - resource definition file
	Demo – program
	Demo – compiling resources
	Demo – linking
	Palm Tcl compatibility with Tcl 7.6
	Alphabetical Reference
	beep
	beep ?BEEPTYPE?

	clipboard
	clipboard
	clipboard ?text?

	clock
	clock clicks ?-rate?
	clock format CLOCK_VALUE ?-format FORMAT_STRING?
	clock seconds
	clock selectday ?-by MODE? ?-init BINTIME? ?-title TITLE?
	clock selecttime ?–start STARTTIME? ?-end ENDTIME

	dm
	dm create NAME CREATOR TYPE ?-rsrc?
	dm opendb NAME ?options?
	dm exists NAME
	dm list ?-all? ?-name NAME? ?-type TYPE? ?-creator CREATOR?
	dm delete NAME
	DBHANDLE close
	DBHANDLE get RECORDINDEX ?VARNAME?
	DBHANDLE set RECORDINDEX ?-var? VALUE
	DBHANDLE delete RECORDINDEX?
	DBHANDLE count
	DBHANDLE sort ?options?
	DBHANDLE recinfo?option?

	emulator
	emulator
	emulator log MESSAGE_STRING
	emulator source FILENAME

	event
	event key KEYCODE
	event menu MENUID
	event system SYSTEMCODE

	form
	form ids
	form handles
	form load RESID ?options?
	FORMHANDLE unload
	FORMHANDLE configure ?options?
	FORMHANDLE cget ?options?
	FORMHANDLE display ?-popup BOOLEAN?
	FORMHANDLE get RESID ?VARNAME?
	FORMHANDLE set RESID ?-var? VALUE
	FORMHANDLE getsel RESID ?VARNAME?
	FORMHANDLE setsel RESID STARTPOS ENDPOS
	FORMHANDLE focus ?RESID?
	FORMHANDLE redraw ?-force?
	FORMHANDLE itemconfig RESID ?options?
	FORMHANDLE itemcget RESID ?options?
	FORMHANDLE tget RESID ?RECINDEX COLUMN? …
	FORMHANDLE tset RESID ?RECINDEX COLUMN VALUE? …

	info
	palm
	palm launch
	palm keyboard
	palm graffitihelp

	source

	Event Reference
	Event Keyword Substitution

